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An essential function of the human visual system is to locate
objects in space and navigate the environment. Due to limited
resources, the visual system achieves this by combining imper-
fect sensory information with a belief state about locations in a
scene, resulting in systematic distortions and biases. These biases
can be captured by a Bayesian model in which internal beliefs
are expressed in a prior probability distribution over locations
in a scene. We introduce a paradigm that enables us to mea-
sure these priors by iterating a simple memory task where the
response of one participant becomes the stimulus for the next.
This approach reveals an unprecedented richness and level of
detail in these priors, suggesting a different way to think about
biases in spatial memory. A prior distribution on locations in a
visual scene can reflect the selective allocation of coding resources
to different visual regions during encoding (“efficient encoding”).
This selective allocation predicts that locations in the scene will
be encoded with variable precision, in contrast to previous work
that has assumed fixed encoding precision regardless of location.
We demonstrate that perceptual biases covary with variations
in discrimination accuracy, a finding that is aligned with simula-
tions of our efficient encoding model but not the traditional fixed
encoding view. This work demonstrates the promise of using
nonparametric data-driven approaches that combine crowdsourc-
ing with the careful curation of information transmission within
social networks to reveal the hidden structure of shared visual
representations.

visual perception | spatial memory | iterated learning | Bayesian statistics

The formation of accurate memories poses a difficult problem
for the human visual system, which must process complex

and noisy scenes while keeping pace with a relentless stream
of incoming information. Because not all information is equally
useful, the visual system must allocate its limited resources selec-
tively, which leads to simplified and distorted internal represen-
tations (1–9). An essential function of the human visual system
is to locate objects and navigate visual scenes, and understand-
ing how it accomplishes this depends on detailed and accurate
measures of visuospatial memory representations (10).

Previous work has probed visuospatial memory distortions
using a task in which participants reproduced the locations of
points within visual scenes, finding that participants’ responses
were systematically biased (11–14). These systematic distortions
have been described in terms of an attraction toward prototyp-
ical locations in the scenes (11–15), with perceptual attractors
located at the centers of mass of visual objects (12); centered
around prototype locations, such as the quadrant centers of a
circle (11, 13, 14); or located along the medial axis (“shape
skeleton”) of geometric shapes (16).

The state of the art in characterizing human visual memory
biases relies on the long-standing category adjustment model
(CAM) (11, 13), which asserts that each reconstruction R from
memory linearly interpolates between the stimulus S and a
prototype P , with

R=wS +(1−w)P +n [1]

for some weight w , where n is a perceptual noise term. Using the
CAM relies on fitting the prototype location and other model
parameters to the data, a process that is sensitive to estima-
tion noise, particularly when using a relatively small number of
human judgments (11, 13). In situations where multiple proto-
types need to be estimated, the risk of overfitting to noise is even
greater, and the number of prototypes must be predetermined
(Materials and Methods).

Here, we propose a method that overcomes these limitations.
Our approach is based on two innovations. First, we lever-
age online crowdsourcing platforms to increase the number of
human judgments obtained significantly, and second, we apply an
adaptive sampling technique based on serial reproduction (17)
to estimate the prototype locations nonparametrically, sidestep-
ping any model-fitting approach. In our paradigm, information is
repeatedly retrieved from memory by a sequence of people, with
the reconstruction of one person becoming the stimulus for the
next, forming a transmission chain analogous to the “telephone
game.” The first participant views a point overlaid on an image
and must later reproduce the location of the point from mem-
ory following a delay. The next participant views the same image
but with the point located in the position reconstructed by the
previous participant. This process is repeated for each partici-
pant in the chain (Fig. 1A and SI Appendix, Fig. S1). Unlike the
traditional approach, which typically attempts to fit a descriptive
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Fig. 1. Visuospatial memory distortions, serial reproduction paradigm, and results. (A) Illustration of the serial reproduction method. The first partici-
pant views an image with a point overlaid in a random position and is then asked to reproduce its location from memory. The next participant views
the same image but with the point located at the position reconstructed by the previous participant. The process is repeated for a total of 20 iterations.
We adopted a between-subject design, where participants contributed to a given chain only once. (B) Serial reproduction results for the remembered
position of points overlaid on a simple shape (triangle) and a natural image (lighthouse). The initial uniform distributions of 500 points are shown
(column 1) as well as the distributions of the same points at iterations 1, 5, 10, 15, and 20 of the transmission chains. (C) Scatterplots showing the
superposition of responses across all iterations of the chains for each of the shapes and the corresponding KDEs. (D) KDEs and scatterplots for complex
natural scenes.
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model to noisy and unreliable estimates following only a single
iteration of this process, we repeat it until convergence, which
allows us to discern the prototypes toward which the responses
converge. Intuitively, serial reproduction “amplifies” shared per-
ceptual biases by compounding systematic errors (18). In terms
of the CAM, it is straightforward to show that repeating the
paradigm eventually converges to the CAM’s prototypes. In the
simple case described in Eq. 1, the distance to the prototype
decreases on average with each iteration, and the prototype P
is approximately a fixed point of the iterated process.

Indeed, in the case of simple shapes, our paradigm reveals
a pattern of results that is consistent with previous literature
and the CAM (Fig. 1C and SI Appendix, Fig. S12) (13). How-
ever, it is also visually apparent that our technique paints
a far more nuanced picture of visuospatial memory biases,
revealing patterns missed by previous estimation approaches
and that are inconsistent with a bias toward category centers
(11, 12). Representative results are shown in Fig. 1 B and C.
We found spatial memory distortions toward the edges and
vertices of the geometric shapes, revealing a greater number
of modes at different locations than previously thought (11–
13). For natural images, the patterns are even more complex
(Fig. 1D).

How can we explain the complex patterns of visual memory
biases revealed by our method? The CAM has traditionally been
given a Bayesian interpretation (11). In this formulation, proto-
type point locations (landmarks) are replaced by a continuous
probability density function [the prior p(S), which represents
a belief state about probable point locations] where the land-
marks correspond to the modes of the distribution. Intuitively,

this distribution quantifies the degree of “landmarkness” of dif-
ferent visual regions. According to this view, participants infer
point locations by combining noisy sensory information with the
belief state. As a result, participants produce responses that are
systematically biased toward nearby landmarks (SI Appendix,
Fig. S2). The Bayesian interpretation has an important impli-
cation when it comes to understanding our serial reproduction
paradigm because under experimentally verifiable assumptions,
one can show that with multiple iterations of the serial repro-
duction process, distributions estimated from the chain results
converge to the prior (refs. 18–20 and Materials and Methods
have a proof).

Previous literature on CAM (11) assumed that the sensory
noise is Gaussian and isotropic regardless of location (“fixed pre-
cision”) with a fixed SD σ (Fig. 2A). This assumption is common
to the classical “categorical perception” literature (21). Impor-
tantly, it has a direct mathematical implication with respect to
how discrimination accuracy changes depending on the distance
of a stimulus location to a landmark. In particular, it predicts that
discrimination is lower near the landmarks because point loca-
tions near landmarks will be biased and perceived to be closer
than they actually are, making them harder to tell apart (Fig. 2A).
This phenomenon, known as the “perceptual magnet effect,” has
been demonstrated in multiple perceptual modalities (21–24),
including spatial memory (25, 26).

An alternative to the fixed precision view is the idea that
precision varies over an image. The “variable precision” view
trivially predicts variation in discrimination accuracy and can also
explain convergence in the transmission chains since it models
serial reproduction as a random walk with decreasing step sizes.
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Simulated chain dynamics and d' for xed encoding E Simulated chain dynamics and d' for e cient encoding

Fixed precision model of spatial memory distortionsA
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Fig. 2. Models of visuospatial memory. The curves in A–C show the distributions of reproductions of a set of stimulus locations under a different model.
(A) Fixed precision view. Perceptual noise (precision) is assumed to be constant, and biases occur when participants infer the true stimulus location (red
dot). Average responses (pink dot) are pulled toward a nearby landmark (green dot). Because point locations near a mode (Left) are perceived to be closer
to a nearby landmark, they are also harder to discriminate. Far from a mode (Right), responses are less biased, and discrimination between nearby point
locations is higher. (B) Symmetric variable precision model. This model introduces the idea that perceptual noise (precision) varies and that it is highest near
a landmark (Left) and lowest far from a landmark (Right). This model trivially explains higher discrimination accuracy near a landmark but does not predict
perceptual biases. Individual responses are assumed to be independent noisy samples from a symmetric function centered on the true stimulus location,
and on average, these responses will be unbiased (pink dot). (C) Efficient encoding model. Constant precision in a perceptually warped coordinate space
(internal representation) determines how perceptual noise is skewed in Euclidean units. Visual regions near landmarks are overrepresented in the internal
representation, resulting in higher precision in external Euclidean units. The skewed perceptual noise also predicts that responses near a landmark will
be biased toward that landmark on average (Left) but not when the stimulus is far from a landmark (Right). In Euclidean space, the curves represent the
reproduction distributions of the responses. The same reproduction distributions are also shown in the internal representation (in JND units). (D) Simulations
of the fixed encoding model and predicted discrimination accuracy map. Given the prior (column 1), the model produces perceptual biases toward the three
modes in the prior over multiple iterations of the serial reproduction process. Examples are shown for the 1st, 5th, 10th, 15th, and 20th iterations of
the process. The fixed encoding model predicts that discrimination is reduced in the modes (column 8). (E) Simulations of the efficient encoding model and
predicted discrimination accuracy map. The model also produces perceptual biases over multiple iterations. Critically, it also predicts increased discrimination
accuracy in the modes of the prior (column 8).
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With each step (iteration), responses are more likely to con-
centrate around the landmarks, which act as “absorbing states.”
Critically, the variable precision view introduces the possibility
that discrimination accuracy increases near the landmark, which
is the opposite of the prediction made by the fixed precision
model. In this paper, we test these opposing theoretical pre-
dictions empirically. Testing for the perceptual magnet effect
or an increase in discrimination accuracy near a landmark is
accomplished by comparing the results of the memory exper-
iments (which reveal biases in reproduction) with the results
of two-alternative forced choice (2AFC) “same” or “different”
experiments, which quantify discrimination accuracy. We show
that discrimination accuracy is higher near the landmarks, refut-
ing the long-standing fixed precision account of spatial memory
biases and supporting the variable precision view.

However, variable precision may or may not predict consis-
tent perceptual biases. In its simplest form, variable precision
can be implemented with symmetric noise (“symmetric variable
precision”) (Fig. 2B). Such a model predicts that R−S (a single-
trial response) has independent noise with decreasing magnitude
closer to a landmark. However, this prediction is at odds with the
fact that people tend to produce biased responses (11, 12, 25) and
that as a result, neighboring point reconstructions tend to be ori-
ented in similar directions. For example, nearby point locations
that are close to a landmark will be consistently shifted toward
that landmark (SI Appendix, Fig. S3). We confirm this effect in
our data, which we measure by quantifying the probability of
small angular differences in single-trial biases for nearby point
reconstructions, indicating that the variable precision model is ill
suited to fully explain spatial memory distortions, at least in its
simplest form.

These results demonstrate the need for a theoretical model
based on the variable precision view that can also predict the
consistent perceptual biases in the data. In this work, we inno-
vate on a recent Bayesian formulation of variable precision
developed in terms of efficient encoding (7), generalizing it to
the high-dimensional case using mathematical tools from differ-
ential geometry. According to this model, convergence of the
serial reproduction chains occurs due to the combined effect
of variable precision (causing a shift in successive reproduc-
tions toward the landmark) and consistent perceptual biases
(like a “gravitational pull” of responses toward the landmarks).
This model has the advantage of being a fully Bayesian model,
just like the long-standing CAM account of spatial memory
described above, and with no additional parameters. To explain
this model, we start with a key notion from signal detection
theory (27).

A common assumption from signal detection theory is that
variable precision over an image can be measured both in
terms of changes in sensitivity using physical (Euclidean) dis-
tance units and also, in terms of constant just noticeable dis-
tance (JND) units over a transformed internal representation of
the space (Fig. 2C and SI Appendix, Fig. S4). In other words,
increased precision in a Euclidean coordinate space is equiva-
lent to constant precision in a perceptually dilated coordinate
space. Intuitively, the geometric pattern of dilations and con-
tractions is similar to how variations in perceptual sensitivity
are reflected in neural representations such as the somatosen-
sory homunculus (28) or retinotopic map (29), where increased
precision corresponds to areas that are overrepresented by the
brain. Interpreting variable precision in terms of JND units is
useful because it forms the basis of a fully Bayesian formula-
tion of the variable precision view that overcomes its limitations
when it comes to predicting perceptual biases while also pre-
dicting increased discrimination accuracy near the landmarks
(Fig. 2 C and D) (7, 30).

The efficient encoding model (7) is based on the idea that
encoding resources limit the ability to store all regions of a visual

scene with equal accuracy, and it specifies the optimal trade-off
between coding resources and precision (7, 30). The essence of
the model is that it determines the exact mathematical relation
between the magnitude of the bias and discrimination accuracy.
This is useful because it predicts the full range of empirical
results in this paper including the serial reproduction dynamics
and discrimination accuracy measures (Figs. 2 D and E and 3
A and D). Critically, it also predicts that single-trial biases for
nearby point reconstructions tend to point in the same direction
(SI Appendix, Fig. S3).

Thinking about spatial memory distortions in terms of effi-
cient encoding helps to explain the structured priors revealed by
our method: As the perceptual space is condensed to Euclidean
space, it concentrates the prior probability distribution in regions
of greater precision (Fig. 2C). A uniform prior in the percep-
tual space will become a distribution in Euclidean space in
which probability is proportional to encoding precision. As a
result, the priors we estimate reveal the geometry of the per-
ceptual space. This perspective also makes additional testable
predictions. Because it explains biases in terms of an optimal
allocation of encoding resources, it predicts that limiting these
resources in the task should result in qualitative changes to
the internal representation for a given stimulus image, rather
than just introducing additive noise to the original represen-
tation. We confirm this prediction empirically by reducing the
encoding time in our experiments, which reveals qualitative sim-
plifications to the transmission chain results, rather than just
additional noise. In contrast, changing the retention time or
manipulating the display during the reproduction phase had only
a minor effect on the final results, suggesting that biases emerge
during encoding rather than the retention or reproduction
phases.

Results
Revealing Spatial Memory Priors by Serial Reproduction. We began
by running a series of serial reproduction experiments probing
memory for point locations in simple images and a selection of
complex natural scenes. For simple images, we used geometric
shapes (circle, triangle, square, and pentagon), and for natural
scenes, we used images of both natural and man-made objects
(Fig. 1). We ran approximately 500 unique chains, 1 for each ini-
tial point location, which we randomly sampled from the uniform
distribution. For each chain, the telephone game was played for
20 iterations. Fig. 1B shows the initial uniform distributions of
the points for the triangle and a natural image, as well as the
results of the 1st, 5th, 10th, 15th, and 20th iterations of the
process. As expected, initial point locations and the locations
of points in the first iteration were not significantly different
from a uniform distribution (P = 0.35 and P = 0.08 for initial
seeds and iteration 1, respectively). However, subsequent itera-
tions deviated considerably from the uniform distribution (P <
0.001 for iterations 2 to 20 for all shapes). The distributions esti-
mated based on data aggregated from each iteration converged
to a stationary distribution within approximately 20 iterations
(SI Appendix, SI Text and Figs. S5 and S6 have further conver-
gence analyses). Fig. 1 C and D shows scatterplots of the chain
point locations across all iterations for each of the images, as
well as kernel density estimates (KDEs; which are estimates of
the underlying distributions that produced the data, as explained
in Materials and Methods). They reveal the intricate structure of
visuospatial memory priors.

Precision Shapes Visuospatial Memory Representations. To test the
opposing predictions of the fixed and efficient encoding models
(the simulated d ′ results of both models are in Fig. 2 D and E), we
ran a series of discrimination accuracy experiments on a separate
cohort of participants using the same images. Participants saw
the image with a point positioned over it in a random location
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C Discrimination experiment results: smoothed d' grids and maps

B Discrimination experiment: experimental conditions and design D Correlations between priors and d' maps (real and predicted)
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Fig. 3. Visuospatial memory distortions correspond to variable encoding precision. (A) Representative example of real and simulated chain dynamics and
discrimination maps (face image). Real and simulated KDEs are shown for iterations 0, 1, 5, 10, 15, and 20. Both the efficient and fixed encoding models
provide good approximations to the real transmission chain data (SI Appendix, Fig. S8). Real and simulated discrimination accuracy maps are also shown,
including correlations to the prior. (B) Discrimination experiment conditions and experimental design. Discrimination points were obtained from a regular
two-dimensional (2D) grid of points over the image. In the same condition, the red dot did not change position in the second presentation. In the shifted
condition, the red dot was shifted to a point located in a random position at a six-pixel radius distance from the original position. Two identical images were
shown for 1,000 ms sequentially with a red dot placed on top of them. The dot was either in the same location in both cases (same condition) or shifted
(shifted condition). Both the dot and the image were shifted by a random offset in the second presentation in both conditions. The starting points were
sampled from a 2D grid of possible points over the image. (C) Discrimination results for natural images. Discrimination d′ values for each grid point were
convolved with a Gaussian kernel, and final maps were computed through cubic interpolation of the smoothed d′ grid values. (D) Correlations between
priors and discrimination (natural images). For each noise magnitude σ, we computed the correlation predicted by the two models. The correlations were
positive (blue line) for the efficient encoding model and negative (red line) for the fixed encoding model. Thin lines show data for individual natural images;
error bars show SDs across images. The green line shows the mean and SD of the correlations of the empirical d′ data and the priors. We exclude the edges
of the images because the fixed encoding model produces predictions with noticeable edge artifacts resulting in slightly smaller correlations than the ones
we report. The fixed encoding model also predicts smaller variation in d′ across the images (SI Appendix, Fig. S8). The data support the efficient encoding
model.

sampled from a regular grid of possible point locations (Fig. 3 B
and C). After a 1,000-ms delay, the same image reappeared with
the point in either the same position or in a shifted position, and
participants were asked to determine if the point was the same
or “shifted” (Fig. 3B). We obtained change sensitivity responses
from dense point grids over our images, producing detailed d ′

accuracy maps (Fig. 3C and SI Appendix, Fig. S7). Smoothed d ′

accuracy maps are shown for the natural images in Fig. 3C. We
found that discrimination maps were consistently highly and pos-
itively correlated with the transmission chain results. Because the
discrimination maps and prior KDEs are estimated from noisy
empirical measurements, we also computed disattenuated corre-
lations between the priors and the d ′ maps using estimates of the
internal reliability of the two measures (SI Appendix). We found
that the disattenuated correlations for the d ′ maps, which ranged
between r = 0.76 and r = 0.93 (average r = 0.82), predict a signif-
icant portion of the variance, even though there may still be some
systematic variation originating from other sources. Note that
given the prior, both models have only a single degree of freedom
(the perceptual noise σ). While both models fit the transmission
chain experiment dynamics well (Fig. 3A and SI Appendix, Fig.
S8), the results of the discrimination experiment are consistent
with the predictions of the efficient encoding model (we observed
positive correlations between the transmission chain results and
the simulated discrimination accuracy maps in all cases; P <
0.001; via bootstrapping) but not the fixed encoding model (we
observed negative correlations in all cases where σ> 0). Fig. 3D
shows these opposing predictions.

Consistent Perceptual Biases. A well-documented finding in the
literature describes people’s tendency to produce consistent per-
ceptual biases in the task. The bias consists in producing a
response that is oriented toward the nearest landmark. One
implication of this is that reproductions of neighboring point
locations will tend to be oriented in similar directions toward
the nearby landmark. However, the symmetric variable preci-
sion model predicts random independent bias directions (SI
Appendix, Fig. S3 A and B). To quantify this effect in our data,
we computed histograms of the angular differences between the
averaged biases of nearby point reconstructions for the trian-
gle data (SI Appendix, Fig. S3F) and for all natural images (SI
Appendix, Fig. S3G). We found that small angular differences
(between −12◦ and +12◦) tend to be 1.83 to 4.36 (mean 2.8)
times more probable than expected by chance for all images
(P < 0.001; via bootstrapping) (SI Appendix, Fig. S3). The
efficient encoding model predicts significantly more probable
angular differences in this range, while the symmetric vari-
able precision model predicts a uniform distribution of angular
differences (SI Appendix has more information).

Encoding, Memory, and Reproduction. The theoretical assump-
tions of the efficient encoding model predict that distortions
should change with direct experimental manipulations of encod-
ing precision (7). We confirmed this through controlled experi-
ments in which we manipulated both spatial and temporal factors
of encoding precision for one of our natural images. Specifi-
cally, we manipulated encoding precision temporally by reducing
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the encoding time in our task from 1,000 to 200 ms. We also
manipulated encoding precision spatially by either adding Gaus-
sian noise to the stimulus image or reducing its contrast signifi-
cantly. We found that these manipulations produced priors that
were significantly different from the original when we compared
the resulting KDEs with the original findings (P < 0.001) (SI
Appendix, SI Text and Fig. S9 have details). We also observed
simplifications to the priors for shape images following similar
experimental manipulations (SI Appendix, Fig. S11). In addi-
tion, we tested if the biases are generated during the encoding
phase or if they emerge during the testing phase of the experi-
ment when the image is reintroduced and participants produce a
response. To do this, we substituted the image during the repro-
duction phase with a completely blank gray region, as well as
the opposite: a blank gray region during the encoding phase,
followed by a naturalistic image during the reproduction phase.
If biases originate from visual processing of the images dur-
ing the reproduction phase, we would expect to see biases that
reflect the visual characteristics of the images shown at test time
(e.g., the natural image if the image shown during the encoding
phase was a blank gray region). However, we find the opposite:
The pattern of biases corresponds to the visual characteristics
of the image presented during the encoding phase and not the
reproduction phase (SI Appendix, Fig. S10). Finally, we tested
the effect of increasing the delay time (from 1,000 to 2,000 ms)
and found that it did not produce any significant differences in
the pattern of biases when compared with the original results (SI
Appendix, Fig. S9), suggesting that the visuospatial information
is preserved throughout the delay phase.

Discussion
Summary of the Results. We developed an experimental paradigm
that provides direct estimates of the geometry of visuospatial
representations. We achieved this by adopting a spatial mem-
ory task (remembering the location of a point in an image)
and incorporating it into transmission chains. Using this itera-
tive paradigm, we show that visuospatial distortions are far more
intricate and complex than previously suggested (Fig. 1). The
traditional view formulated in terms of the CAM holds that
perceptual biases are due to an attraction toward prototypical
landmarks in a scene. This view typically assumes fixed preci-
sion regardless of location. As a consequence, it predicts lower
discrimination near landmarks (Fig. 1D). We tested this predic-
tion empirically and found the opposite (Fig. 3). These results are
consistent with a variable precision theory—namely, that biases
are due to reduced perceptual noise near landmarks. We formal-
ized these two interpretations in terms of Bayesian models and
found that although both predict the biases and chain dynamics
well, only the efficient encoding model (which is the Bayesian
incarnation of the variable precision view) accurately predicted
the discrimination results. We also show that the efficient encod-
ing model, unlike an alternative non-Bayesian variable precision
model, has the added benefit of predicting the consistent percep-
tual biases that are clearly present in the data and that have been
reported in past work as well (11, 25). Furthermore, by manipu-
lating the images shown during the encoding and reproduction
phases of the experiment, we demonstrate that biases emerge
during the encoding phase rather than during the delay or repro-
duction phase. We also show an interaction between the visual
complexity of landmarks and encoding time: Shorter encoding
times result in simplified internal representations (SI Appendix,
Figs. S9 and S11). Both results are aligned with key predictions of
the efficient encoding model, namely that biases emerge during
the initial process of encoding spatial locations with respect to
the image, rather than during memory retention or reproduction.

CAM. Previous work explains distortions as a consequence of
being drawn to perceptual attractors. In this tradition, broadly

referred to as the CAM, two distinct approaches have been taken
to characterizing these attractors. The first approach asserts that
perceptual attractors (or “prototypes”) are located at object
centers (12, 31, 32). Object centers have typically been opera-
tionalized as the centers of mass of handcrafted semantic seg-
mentations of images. We found that centers of mass were poor
predictors of the priors revealed by the transmission chains, with
an average correlation to the priors of r = 0.22 across all our
primary images (SI Appendix, Fig. S15), as well as a representa-
tive sample of images used in prior work (12, 31) (SI Appendix,
Fig. S16). In the second approach, prototypes are estimated
using a descriptive model that asserts that each reconstruction
R from memory linearly interpolates between the stimulus S
and a prototype P (Eq. 1 and Materials and Methods). Previ-
ous work has typically estimated prototype locations by relying
on a small number of experimentally observed reconstructions
(11–13). This approach provides good pointwise approximations
to the end result we measure in our paradigm for simple shape
images (14) (SI Appendix, Fig. S12). However, in the case of
natural scenes, where the number of modes is large and hard
to estimate, this approach is prone to overfitting and produces
mostly crude pointwise approximations of the distributions (SI
Appendix, Fig. S13). Finally, a bootstrapping analysis indicates
that using the CAM fit to the data in the first iteration of the
chains cannot produce estimates of the modes in the prior that
are as reliable as those obtained using serial reproduction, even
when equating the amount of data used by both methods in
the comparison (SI Appendix, Fig. S14). These results demon-
strate the practical advantages of our approach over estimation
procedures that rely on parametric model fitting.

Are Visuospatial Representations Low Level? It is natural to ask
if our results can be explained away using low-level features of
the images. If internal representations are indeed more than a
simple function of low-level features, we might expect to see
biases anchored around regions that are physically absent and
only implied by contextual information. We tested this prediction
by repeating the transmission chain experiments using images
possessing illusory contours (SI Appendix, Fig. S17). Illusory con-
tours included a gray square with a smooth gradient that erased
its upper right-hand corner entirely, as well as an image of a
face in which a gradient erased its right half, with the other
half implied by symmetry and context. Transmission chain results
revealed biases concentrated around the illusory regions: a pat-
tern around the upper right-hand illusory corner of the square
that is largely identical to the pattern we observed with the orig-
inal image, as well as biases centered over the illusory eye in the
face image (SI Appendix, Fig. S17).

We also completed an additional manipulation in which we
used human segmentation data of the images and replaced the
entire textured images with uniform gray-scale regions corre-
sponding to the segmented visual objects (SI Appendix, Fig. S15).
Despite the removal of all of the fine structure, we found that
the resulting KDEs are among the most predictive of the orig-
inal findings, suggesting that semantic information rather than
low-level textural information is responsible for a significant por-
tion of the variance, with an average correlation across all images
for which the semantic segmentations were available of r = 0.57.
Finally, these experimental findings are in line with the results of
additional supporting analyses (SI Appendix, Fig. S17) indicating
that the presence of modes in the KDEs is not strictly a function
of low-level information in the images, such as corners and edges
extracted using classic image feature detectors (33).

Attention. We propose the efficient encoding theory as a
Bayesian model that explains visuospatial distortions in terms
of systematic variations in encoding precision. There are sev-
eral physiological and neural processes that may support
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this process. For example, it is natural to speculate about
whether precision and spatial memory are mediated by atten-
tion in our task, including overt attention in the form of eye
movements (34).

To address this, we ran several controlled experiments in
which we combined shorter encoding times (300 ms) with for-
ward and backward noise masking. While shortening the encod-
ing time caused notable simplifications in the structure of the
priors, which is consistent with the view that biases are due to
variations in encoding precision (both spatial and temporal), the
presence of forward and backward masking had little to no effect
(SI Appendix, Fig. S10). However, another possibility is that spa-
tial memory priors reflect spontaneous patterns of free fixations
over image regions and that these regions become spatial mem-
ory landmarks by virtue of being encoded with higher precision
following sustained foveation. However, we found that patterns
of free fixations were poor predictors of our original results (SI
Appendix, Fig. S15).

Next, we tested an additional option: It is well known that
overt attention can vary substantially according to the visual
task (34) and that although free fixations might not be predic-
tive of visuospatial memory priors, perhaps that fixation patterns
produced by participants engaged in a different task might. In
order to address this question, we repeated our experiments
using images for which fixation patterns were available not just
for free fixation but for cued object search and saliency search
tasks as well (35). Although we found the fixation maps to be
highly intercorrelated (SI Appendix, Fig. S18), none provided
good predictions of the spatial memory priors obtained using our
paradigm (average r< 0.2 in all cases, even with optimal smooth-
ing and correction for attenuation) (SI Appendix, Fig. S19). In
addition, we found that our KDE results were also not highly cor-
related with explicit measures of image regions obtained using a
recent behavioral patch rating procedure known to be predic-
tive of overt attention (36, 37) (SI Appendix, SI Text and Fig.
S19 have details). These results suggest that overt attention only
explains part of the variability in spatial memory priors, although
we cannot completely rule out that unique eye movement pat-
terns specific to our task could be mediating precision and bias,
despite the fact that our noise masking experiments suggest oth-
erwise. Further work is required to understand how attention is
involved and whether additional mechanisms mediate how spa-
tial memory representations are encoded, such as explicit verbal
strategies (i.e., verbal descriptions of image regions to estimate
locations).

Modeling Assumptions. Our experimental method is nonparamet-
ric in that it does not rely on model fitting. However, our
interpretation of serial reproduction does rely on a number of
experimentally verifiable assumptions. We assume that partic-
ipants possess similar perceptual priors and that they perform
the experiment by relying solely on the point location presented
to them in a given trial (a Markovian assumption). These two
assumptions are traditionally verified in experiments using trans-
mission chains by way of a strictly within-participant design, in
which each chain contains data from only a single participant (20,
38, 39) (SI Appendix, Fig. S1). We show the results of this within-
participant design for one of our shape images and a natural
image in SI Appendix, Figs. S20 and S21. The results are simi-
lar to the original findings, although the original results are less
noisy, in line with previous work studying the effects of collective
behavior on perception and decision making (40). Therefore, we
opted to present the results of the fully between-subject design
as our main findings. However, it is possible that individual dif-
ferences exist with respect to the relative strength of different
landmarks within a given image and that if this is true, the
between-subject design we adopted cannot reveal this. We illus-
trate the results of a fully within-participant serial reproduction

design, which can be used to detect individual differences with
more data from each participant. However, further work will be
required to fully characterize the role of individual differences.

We further tested the Markovian assumption by adding uni-
form dummy trials in between experimental trials in all of the
chains, where the image was shown with a point in a ran-
dom location rather than the location produced by the previous
participant in the chain. Had participants relied on informa-
tion carried over from previous trials, this manipulation would
have produced a significant effect. However, we found that this
manipulation had only a minor and nonsignificant effect on the
results, supporting the validity of the Markovian assumption (SI
Appendix, Fig. S9). Note that we used 20 iterations to estimate
the prior based on several metrics (SI Appendix, Figs. S5 and
S6), which reveal that convergence of the KDEs occurs by 20
iterations and that adding iterations to the chains did not alter
the estimated distributions substantially (SI Appendix, Fig. S22).
However, it is also visually apparent that there is some vari-
ation between images, so it is possible that results could be
improved with additional iterations, although that would also
come at the cost of completing longer and more data-intensive
experiments.

Finally, while our method reveals more intricate structure
than previous methods (Fig. 1), it is conceivable that even
more refined details could be extracted either with more data
or with more sophisticated data aggregation methods, such as
averaging data over multiple participants before transmission
to the next participant in a chain (41). In addition, we make
a simplifying assumption in our modeling by not considering
the possibility that additional reproduction noise may be con-
tributing to the biases, but modeling reproduction noise would
not change the qualitative nature of the relation between dis-
crimination accuracy and biases (ref. 20 has a simulation that
takes production noise into account in an auditory reproduction
task).

Bayesian Inference and the Efficient Encoding Model. Our empirical
findings are consistent with a variable precision interpretation of
visuospatial biases, which predicts that chaining responses in the
spatial memory task will result in a shift toward high-precision
areas that act as absorbing states. According to this view, conver-
gence in the chain is due to skewed perceptual noise toward the
landmarks. However, the simplest form of the variable precision
account might be to view the iterative process as an unbiased
random walk, where step size decreases with lower perceptual
noise, without perceptual biases (in other words, individual point
reconstructions will not necessarily consistently point toward a
nearby landmark). We favor a more complex version of the
variable precision account that innovates on a recent Bayesian
formulation of variable precision based on efficient encoding (7).
The differences between these models are illustrated in Fig. 2.
We see both empirical and theoretical arguments in support of
a Bayesian interpretation and the efficient encoding model in
particular.

First, unlike a simple variable precision account, the efficient
encoding model predicts consistent perceptual biases. These
biases correspond to the well-documented finding (11, 25) that
people tend to produce responses that are consistently oriented
toward the nearest landmark. We confirm this effect in our data
(SI Appendix, Fig. S3 C and G) and also show that the efficient
encoding model captures this effect (SI Appendix, Fig. S3 C–H),
unlike a simple variable precision model, which completely fails
to do so (SI Appendix, Fig. S3 B–H).

Second, there is a large body of work on spatial memory
that explains systematic biases in terms of the CAM. This work
typically uses Bayesian inference to describe spatial memory
(11, 25), so it is natural that our modeling approach should
adopt the same formalisms. In addition, the Bayesian approach
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provides a unified account for describing multiple perceptual
tasks and specifies clear and testable predictions regarding the
precise mathematical relations between them, such as the rela-
tion between the magnitude of the biases and discrimination
accuracy.

Third, earlier non-Bayesian incarnations of the CAM describe
perceptual attractors in terms of discrete prototypes rather than
continuous distributions. However, our data clearly reveal modes
that vary systematically in terms of their density, elongation, ori-
entation, and shape, all characteristics that are hard to describe
using a model that can only produce discrete pointwise cat-
egorical estimates (Fig. 1D). This is especially evident in the
case of natural images, where fitting a large number of dis-
crete modes provides a significantly poorer approximation of the
biases compared with a baseline (P < 0.01 for all images) (SI
Appendix, Fig. S13). By contrast, the Bayesian formulation over-
comes this problem by describing perceptual representations in
terms of continuous distributions rather than discrete pointwise
entities.

Fourth, unlike a non-Bayesian variable precision account, the
efficient encoding model provides a useful theoretical motivation
for why encoding precision is higher in some visual regions and
not others. Because it explains biases in terms of an optimal allo-
cation of encoding resources, it makes a number of theoretical
commitments that are both testable and useful for understanding
perceptual biases. First, it predicts that biases emerge dur-
ing encoding, rather than delay or reproduction. Therefore, it
predicts that manipulating encoding resources directly should
interact with the structure of the biases. In fact, when we manip-
ulated encoding time, we observed a structural simplification in
the complexity of the results. An unconstrained variable pre-
cision model does not provide any theoretical motivation for
why decreasing encoding time would generate anything beyond
increased additive noise, let alone a qualitative shift toward a
simplified representation (SI Appendix, Fig. S11B). We observed
a similar simplification using a spatial manipulation of visual
complexity (SI Appendix, Fig. S11A).

Finally, in addition to predicting consistent perceptual biases,
the Bayesian models provide a good fit to the dynamics of the
serial reproduction chains. Fig. 2A and SI Appendix, Fig. S8
provide the results of additional self-consistency tests of the effi-
cient and fixed encoding models in terms of how closely they
approximate the complex chain dynamics of the serial repro-
duction data for one of our images. We show that using the
data from the last iteration of the serial reproduction experi-
ments can predict the rate of convergence and the dynamics of
all previous iterations (after fitting the noise-magnitude parame-
ter to the data) and in the case of efficient encoding, predicts the
positive correlations between discrimination results and priors
estimated from the serial reproduction experiment (Fig. 3). This
supports the idea that in addition to predicting perceptual biases,
the efficient encoding model produces good approximations
to the perceptual distortions and discrimination accuracy mea-
sures, as well as the dynamics of the transmission chain results
in our task.

However, as with any Bayesian model that invokes a “prior”
and a “likelihood,” there comes a need to make a number of
interpretative commitments that are worth discussing here. First,
it is clear that any theory of spatial memory should somehow cap-
ture and quantify the concept of a “landmark” because it is a
key concept in spatial memory. One could describe landmarks
as discrete pointwise entities (along the lines of the CAM in
its descriptive non-Bayesian form), but our empirical data show
that using a fixed number of discrete pointwise estimates is not
sufficient to capture the behavioral results, which reveal graded
continuous patterns (with varying elongations, orientations, and
aspect ratios). We provide some quantitative evidence for this
(SI Appendix, Fig. S13), but it is also visually apparent that there

tends to be many landmarks particularly in complex scenes and
that they are not discrete. Therefore, it is natural to quantify the
concept of a landmark as some continuous function that deter-
mines the degree of landmarkness of visual regions in a scene.
The prior accomplishes this since it is a continuous function that
assigns a higher value to visual regions that are more landmark
like (because landmarks make it easier to encode nearby loca-
tions). This function is also a probability density function, which
lends it an additional interpretation in the Bayesian formulation:
It is a belief state about probable point locations in a visual scene.
However, even without adopting a Bayesian interpretation, it is
clear that some kind of continuous function p(s) is needed in
order to specify the degree of landmarkness of visual regions.

Another component of almost any theory of perception is
some way to encapsulate the notion of perceptual noise. In other
words, how accurately or noisily is a given point location per-
ceived by an observer? Assuming that the noise is fixed regardless
of location results in predictions that are incompatible with our
discrimination accuracy data (this is the fixed precision model,
illustrated in Fig. 2 A and D). As a result, we need to come
up with some function that captures the idea that perceptual
noise varies systematically from location to location in an image
(variable precision). In Bayesian terms, the likelihood function
is ideally suited to play this role. Again, even without adopting a
Bayesian view of this idea, the concept of a continuous function
that captures the degree to which perceptual noise influences
spatial memory remains useful. The Bayesian account only speci-
fies how the prior and likelihood are combined mathematically to
form the posterior during inference. In this work, we assume that
reproductions are a sample from the posterior, although previous
work discusses alternatives to this, such as maximum a posteri-
ori estimation, which models reproduction as the mode of the
posterior rather than a sample (18). According to our model, the
reproduction distribution is the net result of the encoding (deter-
mined by the likelihood) and decoding process (determined by
the posterior). The chaining of these two processes results in
the observed reproduction distribution p(R|S) (SI Appendix,
Fig. S2).

Nevertheless, adopting the Bayesian interpretation comes at a
cost: It is significantly more complex mathematically, although
it does not introduce any additional degrees of freedom over
a naive model where variable precision is given by an arbitrary
noise term. Specifically, both the Bayesian and non-Bayesian for-
mulations of variable precision depend solely on a scalar function
defined over the entire space [σ(s) in the case of a variable pre-
cision model and p(s) in our case]. All of the predictions made
by our model (e.g., the discrimination maps and chain dynamics)
are determined only from this scalar function.

Conclusion. Exploring spatial memory biases using serial repro-
duction demonstrates that the study of shared perceptual rep-
resentations can be approached by recasting experimentation as
algorithm design and through the lens of information transmis-
sion inside carefully curated social networks. More broadly, this
work demonstrates the benefit of bringing innovative experimen-
tal and psychophysical methods and computational statistics to
bear on our understanding of otherwise hidden internal repre-
sentations. The advantage of this approach lies in fully charac-
terizing the structure of internal representations, revealing rich,
complex, and ecologically valid perceptual spaces. This detailed
understanding can spur theoretical insights with respect to how
perceptual systems encode and process sensory information.

Materials and Methods
Participants. Participants were recruited online using Amazon Mechanical
Turk. The experiments were approved by the Committee for Protection of
Human Subjects at the University of California, Berkeley and the Institu-
tional Review Board at Princeton University. We obtained informed consent
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from all volunteers. SI Appendix, Fig. S23 presents the exact number of par-
ticipants in each of the 85 experiments. The overall number of participants
in all experiments was 9,202.

Stimuli. The images used in the transmission chain experiments were gray-
scale images of a few simple shapes (circle, triangle, square, and pentagon),
as well as gray-scale images of natural scenes. A detailed description of the
images is provided in SI Appendix. SI Appendix, Fig. S23 shows the list of
image file names for each of the experiments. All stimuli for the experiments
are available in our open science repository (42).

Procedure. Transmission chain memory experiments were programmed
using the Dallinger platform for laboratory automation for the behavioral
and social sciences (43). Reproducible code for the Dallinger experiments is
provided in the open science repository. Patch ratings experiments and dis-
crimination experiments were programmed using the Amazon Mechanical
Turk application programming interface (API).
Transmission chain memory experiments. Participants were shown an
image with a point overlaid on it for 1,000 ms (Fig. 1A). The initial point
locations were sampled from a uniform distribution. Participants were asked
to reproduce the position of the point as accurately as possible follow-
ing a 1,000-ms delay, when the image reappeared on the screen without
the point. To prevent participants from resorting to marking the absolute
positions of the points on the screens during the task, the displays were
shifted by a random offset on the screen during the stimulus phase and
the probe (Fig. 1A). The response was then sent to another participant who
performed the same task. A total of 20 iterations of this telephone game
procedure were completed for each chain. We terminated each experiment
after approximately 12 h. The number of total chains varied somewhat
between experiments (mean 465, range 250 to 577 chains) (SI Appendix, Fig.
S23). A typical experiment included 105 trials, and the average time needed
to complete the task was about 12 to 14 min. SI Appendix, Fig. S23 presents
the number of participants in each experiment. SI Appendix has additional
details.
Visual discrimination experiments. Participants saw an image presented for
1,000 ms with a red point overlaid on it (Fig. 2B). Following a 1,000-ms delay
with a blank screen, the image reappeared with the point either in the same
exact location relative to the image or in a shifted position (both the dura-
tions of the display and the gray-scale images were identical to those in the
transmission chain experiments). In the shifted condition, the shifted point
was offset by a six-pixel radial distance from the original point location, sam-
pled uniformly along the circumference of the circle defined by the six-pixel
radius centered at the original point location. In all cases, the overall display
(the image and point) was shifted by a random offset in the second pre-
sentation to prevent participants from using absolute positions within the
display. The second display remained for 1,000 ms on the screen and was fol-
lowed by a 2AFC (“red point same” or “red point shifted”). SI Appendix has
additional details, including the 2AFC data analysis. We obtained responses
from a total of 20 participants for each grid point and for each condition
(same or shifted).

Nonparametric KDE. For each chain, we used the data for all iterations.
We computed the empirical mean and covariance matrix [µi = meanj(Rij),
Σi = Covj(Rij)], where Rij is the response in chain i and iteration j. To estimate
the typical kernel width, we computed the square root of the eigenvalues
of this matrix. These values ranged between 0.015 and 0.025 for shapes and
between 0.020 and 0.040 for images (these values are reported in units of
fraction relative to an image size of 1). Since the covariance estimate is based
on a small number of points, we computed a regularized covariance matrix
Σ′i = Σi +λ2I where λ was set to 0.015 for shapes and 0.020 for natural
images and I is the identity matrix (values were chosen based on the esti-
mates of the unregularized matrices above). For each chain, we computed
a Gaussian distribution: pi(s) = 1√

(2π)2|Σ′i |
exp(− 1

2 (s−µi)
T Σ′−1

i (s−µi)).

Next, we computed the KDE as the normalized sum over all of the pi dis-
tributions. If N is the total number of chains, the nonparametric KDE for a
given image becomes P(s) = 1

N

∑
i pi(s). Results of this procedure are shown

for the shape image results in Fig. 1C.

Parametric KDE. KDEs were computed using the data from the last iteration
of the chains. For each point, we computed a Gaussian kernel centered at
the point with a diagonal covariance matrix. We set the kernel width to a
conservative value of 0.025 for shapes and 0.040 for natural images. These
values were chosen based on the ranges of the estimates obtained from the
unregularized nonparametric kernels. The final KDE was calculated by sum-

ming all of the Gaussian kernels and normalizing. Results of this procedure
were used for all statistical analyses.

Comparing Nonparametric Estimates with the CAM. The CAM (13) describes
the remembered position for a response vector i as a weighted average of
the actual location at which the point was presented (Si) and the weighted
sum of the M spatial attractor locations using the following equations:

Ri = wSi + (1−w)
M∑

k=1

vikPk

where

vik =
e−c‖Si−Pk‖∑M

k′=1 e−c‖Si−Pk′ ‖

and Ri and Si are vectors in R2 containing the two coordinates for the
ith initial seed point (in iteration 0) and the corresponding ith response
point in iteration 1, respectively. The Pk terms are vectors corresponding
to the prototype coordinates estimated by the model. The weight w corre-
sponds to the relative strength of the fine-grained memory representation
(as opposed to the strength of a prototype in the prior). The larger w is, the
closer the memory reconstruction approximates a perfectly unbiased spatial
location. vik captures the relative pull of each of the locations Pk for each
point i. Finally, c corresponds to a “sensitivity” parameter that models the
sharpness of the prototype boundaries.

In the case of simple shapes, we fit the model with only four prototypes
using all of the data from the first iteration of our experiment for the fit-
ting process (using the same number of parameters used in ref. 13). Our
results are consistent with previous estimates (SI Appendix, Fig. S12) (13, 14).
However, when fitting natural images, it is hard to estimate the number of
modes, and the results are poor predictors of the priors estimated via serial
reproduction (SI Appendix, Fig. S13). We fit the CAM using 5, 10, and 20
prototype locations (Pk) terms for each of the natural images. We obtained
the best estimates for the locations of the Pk terms as well as the other
parameters of the CAM using all initial point locations and the positions in
the first iteration for each of the images. We optimized the CAM parame-
ters using Matlab’s Optimization Toolbox and the nonlinear programming
solver fmincon. The results of this comparison are presented in SI Appendix,
Fig. S13. Finally, we also completed an analysis comparing the internal reli-
ability of the transmission chain results with the predictions of the CAM for
one of our images, which shows that using the CAM fit to the data in the
first iteration of the chains cannot produce estimates of the modes in the
prior that are as reliable as those obtained using serial reproduction, even
when we equated the amount of data required (SI Appendix, Fig. S14).
Bayesian model of perceptual biases. In visuospatial memory, a point loca-
tion S is encoded into a remembered location T . The neural implementation
of these representations in the brain can take many forms (44). However,
we are interested only in describing these representations in terms of the
distributions that are implied by them (2, 3, 7, 30, 45).

Bayesian models imply that regardless of the sensory encoding process, a
reproduction R is based on inferring the original location S from T , following
Bayesian inference:

p(R = r|T = t) = p(S = r|T = t)∝ p(T = t|S = r)p(S = r). [2]

According to this view, perceptual distortions correspond to systematic (and
normative) deviations between R and S, where R follows the distribution of
the posterior p(S|T).

The degrees of freedom of this approach are 1) the likelihood p(T|S),
which describes the noisy observation of the stimulus location; 2) the prior
p(S), which describes beliefs that the participant possesses about the dis-
tribution of locations given an image; and 3) an assumption about how a
reproduced point location is obtained from the posterior distribution. Here,
we assume that a reproduction is a sample from the posterior, although
other assumptions are possible (18).
Bayesian model of serial reproduction and discrimination experiments. In
our serial reproduction experiment, the reconstruction becomes the basis of
another iteration, and this process is repeated. We assume that participants
use only the current point location as a basis for their perceptual decision
(the Markovian assumption) (Discussion). Formally, the transmission chain
can be described in terms of a sequence of random variables (SI Appendix,
Fig. S2A):

. . .→ St→ Tt→ Rt = St+1→ . . . , [3]

where St , Tt , and Rt are the veridical location, sensory encoded representa-
tion, and the inferred location at step t, respectively.
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Formally, our modeling approach assumes the following.

• Given an image, participants have a shared prior over point locations,
represented as a probability distribution over the image: p(S). We assume
that locations are encoded with respect to a sensory parsing of the image
content. As a result of this process, a prior is generated that reflects the
participant’s belief state about probable locations over the image.

• There is a likelihood function p(T|S) that varies in its form between
the fixed and efficient encoding models (SI Appendix has details). The
likelihood carries information about the shape and magnitude of the
noise. Regardless of its shape, we assume it is available for sensory
inference.

• Participants infer point locations by computing the posterior (Eq. 2):

p(R = r|T = t) = p(S = r|T = t)

=
p(T = t|S = r)p(S = r)∫

p(T = t|S = r′)p(S = r′)dr′
. [4]

• A participant’s response (the reproduction from memory of a point loca-
tion) is a sample from the posterior (refs. 18 and 30 have other choices,
such as choosing the mean of the posterior).

From this, we can derive

p(Sn+1 = r|Sn = s) = p(Rn = r|Sn = s) =∫
p(Rn = r|Tn = t)p(Tn = t|Sn = s)dt

. [5]

Given an initial distribution p(S0), the steps of the transmission chain
experiment are fully determined by recursively integrating the following
(this is demonstrated in Fig. 2A and SI Appendix, Fig. S2B):

p(Sn+1 = r) =

∫
p(Sn+1 = r|Sn = s)p(Sn = s)ds. [6]

This formulation provides an explicit prediction with respect to dis-
crimination accuracy (7). We can write the perceptual sensitivity (d′) of a
discrimination experiment with respect to two point locations S1 and S2 in
the following way:

d(S1, S2) =
µ̃(S1)− µ̃(S2)√

(σ̃(S1)2 + σ̃(S2)2)/2
, [7]

where µ̃ and σ̃2 are the mean and variance of R, which can be computed
from the formula for the posterior.
Serial reproduction converges to the prior. Here, we prove that under the
assumptions stated above, the prior p(S) is the stationary distribution of the
Markov chain in Eq. 3. We denote the prior as π(s) = P(S = s). Using Eqs. 2
and 5, it follows that

p(Sn+1 = r|Sn = s) =

∫
p(Tn = t|Sn = r)π(r)∫

p(Tn = t|Sn = r′)π(r′)dr′
p(Tn = t|Sn = s)dt. [8]

We will now show that π(s) is the stationary distribution of the chain:∫
p(Sn+1 = r|Sn = s)π(s)ds =π(r).

This follows from a direct computation:∫
p(Sn+1 = r|Sn = s)π(s)ds =∫ [∫

p(Tn = t|Sn = r)π(r)∫
p(Tn = t|Sn = r′)π(r′)dr′

p(Tn = t|Sn = s)dt
]
π(s)ds =∫

p(Tn = t|Sn = r)π(r)∫
p(Tn = t|Sn = r′)π(r′)dr′

dt
∫

p(Tn = t|Sn = s)π(s)ds =∫
p(Tn = t|Sn = r)π(r)dt =π(r)

. [9]

The first equality holds true by substituting the formula above for
p(Sn+1|Sn). The second equality is due to a change in the order of inte-
gration. The last equality holds true because

∫
p(Tn = t|Sn = r)dt = 1. Note

that in past work (18, 19), S is observed by both the participant and the
experimenter, whereas in our case, T is observed by the participant and S
is observed by the experimenter. In the former case, the chain converges
to a stationary distribution π(t) equal to the prior predictive distribution:
π(t) =

∫
p(T = t|S = s)p(S = s)ds, whereas in our case, it converges to the

prior π(s) = p(S = s).
Numerical simulations. We computed simulations of the dynamics of the
transmission chain experiments as well as the discrimination experiment
results analytically (Figs. 2D and 3A). We provide two-dimensional (2D) illus-
trations of the efficient encoding and fixed encoding models in Fig. 2 D and
E, showing the opposing predictions of the two models regarding discrimi-
nation accuracy. We assumed that the prior is given as a discrete distribution
p(S = xi) on grid points xi . Note that there are N grid points in the one-
dimensional (1D) case and N2 grid points in two dimensions (N is the number
of grid points per dimension). We also assume that the likelihood is given
as a matrix p(T = xj|S = xi). This matrix represents the probability associated
with a noisy observation xj originating from a veridical location xi . Note
that in the 2D case, this matrix will be of size N4. We then use Eqs. 4–6
computed numerically on the grid points. We also use Eq. 7 for comput-
ing the predicted discrimination accuracy (d′). In the 2D case, we used the
following approximation: We projected the 2D distributions to the 1D line
connecting the two points. In this way, we can avoid the more complex
analysis associated with 2D signal detection theory (46). Additional details
about the simulation of the discrimination experiments are provided in SI
Appendix, Discrimination simulations. Code for the 1D and 2D simulations
and d′ computation is given as part of the open science folder associated
with this paper (https://osf.io/cza25/).

Data Availability. All data and materials reported here are available
on the Open Science Framework (OSF), in the repository named Serial
Reproduction Reveals the Geometry of Visuospatial Representations, at
https://osf.io/cza25/ (46).
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Supporting Information Text10

Participants11

Participants were recruited online using Amazon Mechanical Turk (AMT). The experiments were approved by the Committee12

for Protection of Human Subjects (CPHS) at the University of California, Berkeley and by Princeton University’s Institutional13

Review Board (IRB) for Human Subjects under protocol #10859 (Computational Cognitive Science). We obtained informed14

consent from all volunteers. Participants took part in the experiment anonymously, and no demographic information was15

collected (see (1) for information about AMT workers). For the serial reproduction experiments, compensation was between $1.416

and $1.6, depending on the participant’s performance. Typical participation included 105 trials, and the average time needed17

to complete the task was about 12-14 minutes. Participants could take part only once per experiment; however, they could take18

part in more than one experiment. A typical experiment included about 100 participants. For the discrimination experiment,19

compensation was between $0.75 and $1.0, and typically included 160 trials. For the patch rating tasks, participants received20

$1.5 for participating, and completed 136 trials. Participants could take part in as many discrimination and patch rating21

experiments as they wished. Fig. S23 presents the exact number of participants in each experiment. The overall number22

of participants in all experiments was 9202. We only recruited participants who had 95% or more of their completed HITs23

approved.24

Stimuli25

Stimuli for all 85 experiments are available in an open science database (link: https://osf.io/cza25/), and Fig. S23 presents26

a summary of all stimuli used. We used a range of images that included objects, natural scenes, indoor scenes, reachable27

scenes (2), man-made and natural objects, and faces. We selected images from databases that also contained human semantic28

segmentations and eye-tracking fixations (3) and in some cases, eye-tracking fixations on a variety of perceptual tasks (3, 4).29

Experiments 1-4 (Fig. 1): Serial reproduction experiments with shaded shapes. We used an image of a uniform gray circle,30

triangle, square, and pentagon, as previous work explored biases using simple geometric shapes (e.g (5)).31

Experiments 5-11 (Fig. 1): Serial reproduction experiments using natural images. All the natural images we used were obtained32

from the PASCAL-S dataset, a subset of the PASCAL VOC 2010 segmentation challenge dataset (3, 6–10). We selected this33

database as it provided annotations of segmented regions in the images as well as free-fixation eye movement data. We used34

grayscale versions of these images so that the red point used in the experiments would be clearly visible. We used seven images35

depicting an airplane, a boat in a harbor, a bird on a branch, a horse, a room, a human face, and a lighthouse.36

Experiments 12-16 (Fig. S15): Serial reproduction experiments using semantic segmentations of natural images. The PASCAL-37

S dataset contains human-generated segmentation maps (11). The segmented regions were rendered to an image with the same38

dimensions as the original images, with each segmented region shown in a unique shade of gray. We used segmented images39

that corresponded to the natural grayscale images used in experiments 5-11, although they were not available for the face and40

lighthouse images.41

Experiments 17-27 (Fig. 3, Fig. S7): Visual discrimination experiments. We used the same shape and natural images used in42

experiments 1-11.43

Experiments 28-29 (Fig. S17): Serial reproduction experiments using images with illusory corners. We used the image of the44

shaded square manipulated with a smooth gradient such that the upper right corner vanished into uniform white. We also used45

the image of the human face modified such that a gradient erased the right side of the image.46

Experiments 30-32 (Fig. S9A-B): Serial reproduction experiments: precision manipulations. We used the airplane image used47

in Experiments 5-11, as well as two versions of the image with reduced contrast and added Gaussian noise.48

Experiments 33-34 (Fig. S9C-D): Serial reproduction experiments: payoff and Markovian assumption manipulations. We used49

the plane image used in Experiments 5-11.50

Experiments 35 (Fig. S9B): Serial reproduction experiments: delay manipulation. We used the plane image used in Experiments51

5-11.52

Experiments 36 (Fig. S20): Serial reproduction experiments (within-subject design). We used the pentagon shape image used53

in Experiments 1-4.54

Experiments 37 (Fig. S21): Serial reproduction experiments (within-subject design). We used the plane image used in Experi-55

ments 5-11.56

Experiments 38-45 (Fig. S18, Fig. S19): Serial reproduction experiments: comparisons to fixation maps. We used a subset of57

8 images from the database of images used by (4), for which eye-movement fixation maps were available for a free-viewing task,58

a cued object search task, and a saliency search task.59
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Experiments 46-61 (Fig. S19): “Graspability” and “meaning” map experiments. We used the same images used in Experiments60

38-45.61

Experiments 62-68 (Fig. S10): Forward and backward noise masking experiments, blank encoding, and blank reproduction62

manipulations. We used the lighthouse image from Experiments 5-11, as well as a blank grayscale rectangular image with the63

same aspect ratio as the lighthouse image.64

Experiments 69-72 (Fig. S16): Center of mass (COM) model comparison. We used two grayscale versions of landscape images65

used in prior work studying spatial memory biases (12–14), as well as grayscale versions of the two images containing only66

uniform segmented regions corresponding to distinct RGB profiles rather than the original image textures.67

Experiments 73 (Fig. S11): Serial reproduction experiments: Temporal encoding manipulation with complex shape images.68

We used a 19 -sided regular shaded polygon (a uniform gray region with the same inner gray values as the shapes used in69

experiments 1-4).70

Experiments 74-85 (Fig. S11): Serial reproduction experiments: Spatial complexity manipulation with complex regular poly-71

gon images. We generated shaded regular polygons with 3, 4, 5, 7, 9, 11, 15, 19, 21, and 25 edges, as well as a shaded circle72

such that all spanned the same area and were the same uniform gray as the stimuli used in experiments 1-4.73

Procedure74

Experiments 1-16, 28-45, and 62-85 were programmed using the Dallinger platform for laboratory automation for the behavioral75

and social sciences (15). The discrimination and patch ratings experiments were programmed as Amazon Mechanical Turk76

experiments using JavaScript.77

Experiments 1-4 (Fig. 1): Serial reproduction experiment with shaded shapes. Participants were presented with an image of a78

gray shape with a red point initialized somewhere on the image (both inside and outside the shape boundaries) for 1000 ms.79

The initial locations were sampled from a uniform distribution over the image. Participants were instructed to reproduce the80

exact location of the point relative to the image. Overall positions of the displays, including the point and image, were shifted81

by a random horizontal and vertical offset between 0 and 80 pixels on the screen canvas so that participants could not track82

the absolute positions of the points. The canvas dimensions were 590 by 590 pixels. The response was then sent to another83

participant who performed the same task. A total of twenty iterations were completed for each chain. We terminated each84

experiment after approximately 12 hours. As a result, the number of total chains varied between experiments (250-577 chains85

see Fig. S23). Most results were obtained by aggregating the results of two separate experiments containing about 250 chains86

each. Typical participation included 105 trials, and the average time needed to complete the task was about 12-14 minutes. A87

typical experiment included about 100 participants. Fig. S23 presents the number of participants in each experiment. For the88

serial reproduction experiments, compensation was between $1.4 and $1.6, depending on performance. Participants could take89

part only once per experiment; however, they could take part in more than one experiment. We only retained the chains that90

were full, and discarded any chains that did not reach twenty iterations.91

Experimental trials. Following ten practice trials, there were 95 experimental trials. Only a given shape or image was presented92

throughout an experiment in both the practice and experimental trials. For each of the 95 experimental trials, the presentation93

time was 1000 ms. Participants were given trial-by-trial feedback regarding their accuracy. If their responses were within a box94

around the presented (“objective”) location to be remembered that was 8% percent of the width and height subtended by the95

shape, they received a small monetary bonus and positive feedback (a message in green: “This was accurate”). If not, they96

received no additional bonus and were presented with negative feedback (a message in red: “this was not accurate”). Incorrect97

trials were discarded from the experiment, and the corresponding node in the transmission chain was randomly reassigned98

to another participant; this was done to eliminate the possibility of false responses by bots (16) and discourage inattentive99

participants. Participants could take part only once within each chain (see Fig. S1).100

Practice trials. Practice trials were identical to the experimental trials, except that the margin of error was reduced to a box that101

was 5% of the width and height subtended by the shape image, and the presentation time was 4000 ms. In these trials, the102

point location was randomized uniformly within the image.103

Experiments 5-16 (Fig. 1, Fig. S17, and Fig. S15): Serial reproduction experiments using natural images, and image segmen-104

tation maps. The procedure was identical to Experiments 1-4 except that due to the increased task difficulty, allowable margins105

of error were 7% for the practice trials and 15% for the experimental trials.106

Experiments 17-27 (Fig. 3 and Fig. S7): Visual discrimination experiments. We used the exact same stimulus images that were107

used in the serial reproduction experiments with the natural images. For the shape images, we used versions that were reduced108

in size to limit the number of trials required to obtain full d′ maps (although we preserved the aspect ratios of the gray shapes109

in the images). We produced a regular grid of point locations that spanned the full area of each of the images. The grid points110

were 7 pixels apart. During the task, participants saw an image presented for 1000 ms with a red point placed over it (Fig. 3B).111

Following a 1000 ms delay with a blank screen, the image reappeared with the point either in the same exact location relative112
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to the image or in a shifted position (the durations of the display were identical to those in the serial reproduction experiments).113

In the “shifted” condition, the shifted point was offset by 6 pixels somewhere along a circular radius around the original point114

location, sampled at random. The second display remained for 1000 ms on the screen and was followed by a 2AFC (“red dot115

same”, or “red dot shifted”). Participants could take as long as they liked to choose a response, although they had to complete116

the experiment within one hour before the HIT expired. We obtained responses from a total of 20 participants for each grid117

point, and for each condition (“same” or “shifted”). The full instructions at the start of the experiment were as follows: “In118

this experiment, you will see two images presented one after the other (the gray triangles below). These images will have a red119

dot placed over them. Your task is to determine if the red dot is in the same spot relative to the image for both images in the120

pair, or if the red dot appears displaced the second time it is presented. NOTE: The displays will be displayed at random121

positions on the screen, even in cases when the red dot is placed in the EXACT SAME spot over the image! So part of the122

challenge is to ignore the random shifting of the overall display, and focus on the RELATIVE positions of the dots in relation123

to the images, ignoring the random overall displacements. Finally, in the actual experiment, the image will be a natural black124

and white photograph instead of the gray triangle in these instructions.” For the discrimination experiment, compensation was125

between $0.75 and $1.0, and typically included 160 trials. Participants could take part in as many discrimination experiments126

as they wished.127

Experiments 28-29 (Fig. S17): Serial reproduction experiments using images with illusory corners. The procedure was identical128

to the one used for Experiments 1-4 for the square with an illusory corner, and identical to the one used for Experiments 5-11129

in the case of the face with the illusory eye.130

Experiments 30-32 (Fig. S9A-B): Serial reproduction experiments: precision manipulations. We manipulated encoding preci-131

sion through either stimulus manipulations, or a timing manipulation for one of the natural images (the plane image). For the132

timing manipulation, we reduced the encoding time during the presentation phase from 1000 ms to 200 ms. For the stimulus133

manipulations, we kept the original encoding time of 1000 ms during the presentation phase, but we changed the stimulus134

image by (1) reducing the contrast of the stimulus image, or (2) adding Gaussian noise to the stimulus image (see Fig. S9A-B).135

Aside from these changes, the transmission chains were identical in design to the one that produced the original finding for the136

same image (See Fig. S9E).137

Experiments 33-34 (Fig. S9C-D): Serial reproduction experiments: context manipulations. We manipulated the context in two138

ways: (1) by interleaving the experimental trials with trials in which point locations were presented in random locations (to139

test carry-over effects and the Markovian assumption), and (2) by introducing a payoff in the task. The payoff manipulation140

examined whether a monetary incentive can alter participant response patterns. We enforced uniformity by adding dummy141

trials between each of the trials in which a point location sampled from a uniform distribution over the image was presented. In142

the payoff manipulation, we rewarded correct responses that were within 2.5% of the width and height subtended by the image,143

and to the right of the true point location with double the normal bonus (correct responses to the left of the true location144

were only awarded the normal bonus). We provided trial-by-trial feedback indicating that the response was awarded double145

the normal bonus or just the normal bonus. The instructions at the beginning of the experiment also indicated that correct146

responses that were to the right of the true location would be awarded double.147

Experiments 35 (Fig. S9B): Serial reproduction experiments: delay manipulation. The design was identical to the design used148

in Experiments 5-11 except that the delay phase was extended from 1000 ms to 2000 ms.149

Experiments 36 (Fig. S1B and Fig. S20): Serial reproduction experiments (within-subject design). We used a fully within-150

subject design, where each participant was assigned a set of chains to complete in full (rather than the between-subject design151

in which participants only participated in a chain once).152

Experiments 37 (Fig. S1B and Fig. S21): Serial reproduction experiments (within-subject design). The design was identical to153

the within-subject design used for experiment 36.154

Experiments 38-45 (Fig. S18, Fig. S19): Serial reproduction experiments: comparisons to fixation maps. The procedure was155

identical to the one used for Experiments 5-11.156

Experiments 46-61 (Fig. S19): “Graspability” and “meaning” map experiments (Fig. S19). We used the procedure described157

by (17–19) to generate dense “graspability” and “meaning” maps for 8 images in the database of images used by (4) for158

which detailed eye-movement fixation patterns were available. To do this, we extracted a 20 by 20 grid of fine-scale circular159

image patches from each of the images, and a 12 by 12 grid of coarse-scale circular image patches from the same images.160

The patches were extracted from high-resolution versions of the images that were full-color 2430 by 2430 pixel images. The161

diameter of the fine-scale patches was 256 pixels, and the diameter of the coarse-scale patches was 442 pixels (see Fig. S19A).162

We presented each of the patches along with a small thumbnail of the full image that included a green circular marker over163

the image to indicate where the patch was extracted from, for context. Participants either rated the “informativeness or164

recognizability” of the image content revealed by each of the patches using a Likert scale (1 = “Very low recognizability”, 2 =165

“Low recognizability”, 3 = “Somewhat low recognizability”, 4 = “Somewhat high recognizability”, 5 = “High recognizability”, 6166

= “Very high recognizability”), or they rated the “graspability” of the image content revealed by each of the patches (also167
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using a Likert scale, see Fig. S19B). Participants rated a total of 136 random patches from a given image per experiment, and168

we obtained judgments from 10 unique participants for each image patch over AMT. Participants were paid $1.5 for their169

participation.170

Experiments 62-68 (Fig. S10): Forward and backward noise masking experiments, blank encoding, and blank reproduction171

manipulations. The procedure was nearly identical to the one used for Experiments 5-11. In the case of the forward and172

backward masking experiments, the differences were the following: the encoding time was reduced from 1000 ms to 300173

ms. In addition, we introduced 500 ms forward and backward noise masking to the encoding phase. The noise sequences174

were composed of random 1/f “pink” noise images that were the same dimensions as the natural and blank images. In one175

experiment, the lighthouse image was used during the encoding and reproduction phase, in the second, the lighthouse image176

was shown during the encoding phase, but replaced with a blank uniform gray frame during the reproduction phase. In the177

case of the blank encoding and blank reproduction manipulations, the encoding time was also manipulated from 1000 ms to178

300 ms, but with no noise masking during the encoding phase. In the first experiment, we used the lighthouse image during179

the encoding phase, followed by the blank uniform gray frame during the reproduction phase. In the second, the order was180

reversed. Finally, we repeated the experiment using only uniform gray frames as a control experiment (shown for 1000 ms) as181

well as using the lighthouse image throughout with a 300 ms encoding time.182

Experiments 69-72 (Fig. S16): Serial reproduction experiments: landscape images. The procedure was identical to the one183

used for Experiments 5-11.184

Experiments 73 (Fig. S11): Serial reproduction experiments: Temporal encoding manipulation with complex shape images.185

The procedure was identical to the one used for experiments 1-4, except that the encoding time was changed from 1000 ms to186

300 ms).187

Experiments 74-85 (Fig. S11): Serial reproduction experiments: Spatial complexity manipulation with complex regular poly-188

gon images. The procedure was identical to the one used for experiments 1-4.189

Statistical Analysis190

The Jensen-Shannon Divergence (JSD). In order to compute the distance between distributions we used the Jensen-Shannon191

Divergence (JSD). The JSD of two distributions P and Q is defined by the following:192

JSD(P,Q) = 1
2KL (P ||M) + 1

2KL (Q ||M)

where M = 1
2 (P +Q) and KL (P1‖P2) is the Kullback-Liebler (KL) divergence:193

KL (P1‖P2) =
∫

s

P1(s) log2
P1(s)
P2(s)ds

The JSD is symmetric, and bounded between 0 and 1. It is equal to 0 when P1 = P2.194

Between-subject and within-subject serial reproduction designs. Our main findings were obtained using a strictly between-195

subject design (see Fig. S1A). In this design, AMT participants could only participate in a chain once (each trial corresponded196

to a node inside a different chain). We also completed two within-subject serial reproduction experiments. In these cases,197

participants were assigned full chains, and completed all the iterations for their assigned chains (see Fig. S1B). We show the198

results for all iterations of the chains for both designs, and for both a shape and a natural image in Fig. S20A-B, and Fig.199

S21A-B. The within-participant design requires that each participant complete entire chains, so for an experiment with 100200

trials, that limits the number of chains to only 5. This means that each participant reconstructs point locations shown in a very201

restricted part of the space. The task then becomes obviously biased in a few spatial locations which may appear repetitive to202

a participant, since the same 5 points repeat in approximately the same places. However, when a participant completes trials203

in a fully between-subject design he/she participates only once per chain and is allowed to participate in 100 different chains204

initialized in 100 unique random locations in the image (for 100 trials). This makes the task more engaging and potentially205

explains the reduced noise in this case.206

Encoding precision manipulations, payoff, and other manipulations. We completed direct manipulations of encoding precision207

using the serial reproduction paradigm for one of our natural images (airplane image). We also completed a payoff manipulation208

and a uniformity manipulation to test the Markovian assumption.209

Encoding precision manipulations. We manipulated encoding precision in two ways: by reducing the encoding time during the210

presentation of the point location from 1000 ms to 200 ms, or by (1) reducing the contrast of the stimulus image, or (2) adding211

Gaussian noise to the stimulus image (see Fig. S9A-B). We found that these manipulations had a significant effect on the212

structure of the resulting priors (Fig. S9F-G), which appear simplified relative to the original finding using the same image213

(Fig. S9F). We confirmed this quantitatively using the Jensen-Shannon-Divergence (JSD), and the following analysis: We214

started by obtaining 1000 split-half random sample pairs of the data from the original experiment (1000 unique partitions of215
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the chains). This yielded 1000 data pairs of approximately 250 unique chains (two equal sized random partitions of the full 500216

chains). We then fit a KDE to the data in the 20th and final iteration of each of the two partitions for all 1000 pairs, yielding217

1000 KDE pairs. We then computed the JSD between each of the pairs, which yielded 1000 JSD values. This distribution218

provides a measure of the internal consistency and variation of the KDEs of the original data. In order to test if the encoding219

precision manipulations had an effect on the structure of the priors, we repeated the same procedure described above, except220

that instead of comparing KDEs fit to random splits of the original data, we compared KDEs fit to random partitions of221

the original data to KDEs fit to random partitions of the data obtained from the manipulations. This yielded a distribution222

of 1000 JSD values for each of the experimental manipulations, each providing a measure of how much the manipulations223

produced distributions that diverged from the original distribution of point locations in the 20th iteration of the chains. We224

then obtained 1000 JSD differences by subtracting each of the 1000 JSD values for each of the manipulations from the 1000225

JSD values obtained from split-half samples of the original data. Finally, we tested whether each of these distributions of226

differences were significantly different from 0 (see Fig. S9G). We found that JSD differences for the 200 ms encoding time,227

contrast, and Gaussian noise stimulus manipulations were significantly different from 0 in all cases (p < 0.001). We applied the228

Bonferroni correction to adjust for multiple comparisons.229

Payoff and other manipulations. We tested the effect of introducing a payoff manipulation Fig. S9C-D. In addition we tested the230

Markovian assumption by interleaving experimental trials with trials that have a uniformity prior on point locations throughout231

the chains. This way, if contextual information from previous trials is important we expected to measure a change in the232

structure of the prior. We found that neither manipulation produced significant changes in the structure of the priors when233

compared to the original findings. We evaluated this quantitatively using the JSD measure in the same way that we evaluated234

the effect of the encoding precision manipulations (see section above for details).235

Testing Deviation from a Uniform Distribution Using JSD Distance (Fig. S5). To quantitatively test whether the distribution236

of seeds as well as the subsequent iterations deviated significantly from a uniform distribution over the image, we computed237

the mean JSD distance between the parametric KDE from all experimental points of a given iteration and KDEs of points238

sampled from a uniform distribution over the image. To evaluate statistical significance, we created two randomized data sets239

where the same number of points as in the experimental data were sampled from a uniform distribution. We then computed240

the JSD between the KDEs of these two data sets. This was necessary because the JSD between two distributions is always241

non-negative, and therefore any distribution evaluated from a finite number of points would have a non-zero distance from242

a uniform distribution. As expected, the JSD distance between the initial seeds and uniform samples was not significantly243

different from the null distribution. The data for the first iteration deviated significantly from a uniform distribution for244

the triangle, square and pentagon (p = 0.035, 0.001, 0.004), but not significantly for the circle (p = 0.09). However, for245

all subsequent iterations (iterations 2-20) the distributions significantly differed from uniform (p < 0.001 for all shapes and246

iterations. We applied the Bonferroni corrections for multiple comparisons. Similarly, the JSD distances between the initial247

seeds of natural images (Experiments 5-11) were not significantly different from the null distribution (p > 0.13 for the face,248

lighthouse, bird, room, plane, horse, and boat images); marginally significant for iterations 1-4 (p = 0.001-0.3 for the 7 images);249

and highly significant for iterations 5-20 (p < 0.001 for all iterations and images, Bonferroni correction applied). Fig. S6 shows250

the results for natural images, and shapes (Experiments 1-11). Fig. S20A and S21A show the distributions of points for all 20251

iterations for the pentagon shape, and a natural image, respectively.252

Transmission Chain Convergence Analysis (Fig. S5 and S6). To assess whether the transmission chain process converges within253

20 iterations, we used three methods: distributional distance between each iteration and the last iteration, distributional254

distance between adjacent iterations, and copying accuracy.255

JSD distance between each iteration and the last iteration. This method is used to assess whether the last iteration is characteristic of256

a converged state. If the chain converged we expect the distance to the last iteration to decrease and stabilize as the iteration257

number approaches the final iteration (the distance between iteration 1 and 20 should be larger than the distance between258

iteration 5 and 20, and so on). For each of the 20 iterations and initial seeds we computed the parametric KDE as explained in259

the Methods section. We then computed the JSD distance between each iteration and the last iteration. In other words, we260

tested the difference between JSD distances of pairs of iterations (For example, we compared the distance between the two last261

iterations (19 and 20) with the distance between iteration K and 20 (K = 0 is the initial seeds). We then tested whether these262

differences were significant, and when they ceased to be significant). To test for statistical significance, we randomized 1000263

datasets by sampling the data for all iterations with replacement and computing the distance between the KDEs fit to the264

bootstrapped data from different iterations. Bonferroni corrections were applied in all cases.265

The JSD distance between iteration 1 and 20 was significantly larger than the one between iteration 19 and 20 for all266

experiments (p < 0.001 for the shapes and the natural images). However, the distance decreases with a monotonous trend (see267

Fig. S5). The distance between iteration m and 20 was not significantly different from the distance between iteration 19 and268

20 for all m ≥ K where K was 18, 16, 15, 18 for the circle, triangle, square and pentagon; and K = 12, 12, 13, 11, 10, 11, 13269

for the face, lighthouse, bird, room, plane, horse and boat images).270

JSD distance between subsequent iterations. In this method, we compared the distance between pairs of subsequent iterations271

(comparing the distance between iterations 1 and 2 to the distance between iterations 2 and 3, and so on). At a converged272

state of the process we expect that the distance between subsequent iterations will not significantly change. We found that273
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for geometric shapes, the distance between iteration 0 and 1 was significantly different from the distance between iteration274

19 and 20 for the triangle and pentagon (p < 0.001, p = 0.001) but not significant for the circle and square (p = 0.371, p =275

0.121), corrected for multiple comparisons). The distance between iteration m and m+1 was not significantly different from276

the distance between iteration 19 and 20 for all m > K where K was larger than 1 for all the shapes. Note that the results for277

the natural images did not show a significant decrease in this metric for all iterations, indicating a gradual change with fixed278

temporal dynamics. The results of this analysis are shown in Fig. S5.279

Copying accuracy. In this method we computed the copying accuracy using the root of the mean squared Euclidean distances280

between stimulus and response vectors. To test for significance, we randomized 1000 datasets by sampling with replacement281

from the experimental data and computing the copying accuracy for each iteration. The results of this analysis are also shown282

in Fig. S6. We found that for geometric shapes, copying accuracy of the first two iterations was significantly different from the283

copying accuracy for the last iterations, for the circle, square, triangle, and pentagon (p = 0.044, p < 0.001, p < 0.001, p <284

0.001). The copying accuracy of iteration m and m+1 was not significantly different from the copying accuracy of the last285

iterations for all m > K where K was 5, 15, 15, 9 for the circle, square, triangle, and pentagon respectively). Note that as the286

results of the analysis of JSD distances between subsequent iterations show, the copying accuracy for natural images did not287

reveal a significant decrease, suggesting that the average step size of the process stabilized right from the beginning.288

In a regime where there are numerous nearby landmarks in the scene (as with natural images), copying accuracy does not289

necessarily decrease with additional iterations, as the bias is approximately related to the distance between the current point290

and the nearby landmark. In the case of shape images however, where there are only a few landmarks (vertices that can be far291

from a point location to be remembered) the analysis shows a systematic decrease in the copying accuracy for the first few292

iterations.293

Temporal Encoding Manipulation (Fig. S11). We predicted that using shorter exposure times would force participants to use294

more compact internal representations. When participants were presented with a 19-sided regular polygon shape for 300 ms,295

their shared internal representation tended towards a pattern of biases that was more similar to the results for the circle296

when compared to the results obtained for the 19-sided polygon using a 1000 ms presentation duration. We obtained 1000297

bootstrapped samples of the final iteration results with replacement for both manipulations and compared the KDEs fit to298

these samples with KDEs fit to 1000 bootstrapped samples of the final iteration of the circle result. We found that the JSDs299

of the results for the 300 ms encoding time manipulation (average JSD =0.1647 , SD = 0.011) were smaller than the JSDs300

between the results for the 1000 ms manipulation (average JSD = 0.2336, SD = 0.012, p < 0.001), indicating that reduced301

encoding time for a complex polygon does indeed result in a simpler pattern of biases that is closer to the pattern for the circle302

(Fig. S11). This finding is consistent with a theoretical prediction of the efficient encoding theory, namely that constraints on303

encoding resources will result in simplified internal representations rather than simply noisier versions of the representation304

obtained without reductions in encoding time.305

Complexity Manipulation (Fig. S11). The apparent increase in peaks in visual memory KDEs for more complex regular polygons306

led us to consider changes to the internal representation in the limit, as the regular polygons become more complex and start307

to approximate a circle. Using the same bootstrapping procedure used for quantifying the differences in JSD for the temporal308

encoding manipulations, we compared the JSDs obtained from comparing the final results for each of the regular polygons309

to the final results for a circle of the same area as the polygons. We found that the JSDs obtained for the 21-sided and the310

25-sided polygons (average JSD = 0.137, SD = 0.009, and average JSD = 0.075, SD = 0.007) were significantly different from311

each other (p < 0.001), as were the JSDs obtained for the 15-sided and 17-sided polygons (average JSD = 0.275, SD = 0.013,312

average JSD = 0.205, SD = 0.011, respectively, p < 0.001), and the JSDs obtained for the triangle and diamond shape (average313

JSD = 0.624, SD = 0.009, average JSD = 0.672, SD = 0.004, p < 0.001). Overall, the pattern shows a near-monotonic decrease314

in the JSD means as the shape complexity increases, indicating that as polygons acquire more edges, the resulting memory315

biases begin to resemble those obtained for a circle. This finding is also in line with predictions of the efficient encoding model,316

which theorizes that limits in encoding resources will result in simplified internal representations rather than just noisier ones.317

CAM bootstrapping reliability analysis (see Fig S14). We compared the internal reliability of the transmission chain results with318

the predictions of the cam for one of our images (the plane image). To do so, we used a variant of bootstrapping. This variant319

aims to (a) simulate different amounts of chains: this is done by bootstrapping with replacement, and (b) avoid overfitting in320

each of the methods: this is done by separating the data into training and testing split-half datasets. In the procedure, we321

start by performing a random split of the data, keeping one split-half as the testing dataset and the other split-half as the322

training dataset from which we sample with replacement and fit the cam. The exact analysis is described below:323

To compare the internal reliability of the chain results to the cam estimates, we did the following 1) we computed the correlation324

between KDEs fit to the data in the last iteration of two random partitions (splits) of the data (KDE split-half reliability). 2)325

We then compared that correlation to the correlation between a KDE fit to the data in split 1 to a cam estimate fit to the326

data in split 2. We varied the number of K chains sampled from the chains in split 2 to fit the cam from the stimulus and327

response pairs in iteration 1 of the chains. We also used the same K chains in split 2 to fit a KDE when computing the KDE328

split-half reliability estimates. For each value of K, we computed the correlation to the KDE fit to the data in the last iteration329

of the 250 chains in split 1 to the cam and KDE estimates obtained from the K chains in split 2. Finally, we repeated the330

analysis for each value of K 100 times by obtaining 100 random partitions (splits) of the chains. This procedure is illustrated331
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in Fig. S14A. It shows, for a given random partition of the data into two equal splits, the model fitting and comparison that332

we completed to compare the internal reliability of the serial reproduction chain estimates to estimates made using the cam.333

Fig. S14B shows the results comparing the internal reliability of the KDEs fit to random splits of the data, as well as the334

reliability of the cam estimates, using 5, 10, and 20 prototypes, for each value of K samples from the 2nd partition of 250335

chains. The shaded error bars correspond to 100 random partitions of the full chains into two equal parts. The x-axis in the336

graph (Fig. S14B) is normalized according to the number of participant trials used for the estimation (equating for the fact337

that the serial reproduction estimates are made from multiple iterations, and therefore more data). This analysis shows that338

the serial reproduction results are significantly more internally reliable than the cam estimates for all values of K, even when K339

is large. In other words, even when the two methods are equated for the amount of data used, the serial reproduction results340

produce more reliable estimates. This indicates that using the cam fit to the data in the first iteration of the chains cannot341

produce estimates of the modes in the prior that are as reliable as those obtained using serial reproduction.342

Calculating d′. d′ scores were computed for each image, and for each condition (“same” or “shifted” condition in the discrimination343

task) by calculating the False Alarm (FA) rate (the number of times a given label was selected when the image shown was not344

an instance of that label, over the number of times that the presented images were not instances of that label), and the HIT345

rate (the number of times that a given label was selected when the image shown was an instance of that label, over the number346

of times that all the presented images were instances of that label). d′ is given by: d′ = Z(HIT)− Z(FA) where the function347

Z(p), p ∈ [0, 1], is the inverse of the cumulative distribution function of the Gaussian distribution.348

Model Comparisons: Predicting the Spatial Memory KDE using Local Image Features (Fig. S17, Fig. S15). We extracted local349

gradient-based corner and edge features using the Canny edge detector, and the Harris corner detector (20–22). We used350

all allowable parameter ranges and the OpenCV implementation (23) as explained in detail below. We then computed the351

correlations between the feature maps and the final spatial memory KDEs obtained for the natural images. For each feature352

detector, we performed a detailed grid search of all the parameter settings within the ranges that are specified for these353

algorithms. In addition, we added a smoothing parameter (the standard deviation of an isotropic Gaussian kernel that was354

convolved with the final feature map). We searched for the maximally predictive parameters for a given feature detector as355

measured by its peak correlation to the concatenated KDEs. The reported result was the one that provided the best correlation356

among all searched parameters including the smoothing parameter. We selected the parameters that were optimal for predicting357

the final spatial memory KDEs for all images represented as a single concatenated matrix of each of the individual KDEs,358

using the corresponding concatenated feature maps. For the other features (centers of mass (CoM), fixations, segmentation359

image KDEs, discrimination d′ maps), there were no parameters aside from the smoothing parameter, which was determined360

based on which provided the best correlation to the concatenated matrix of the final spatial memory KDEs for the images for361

which fixations and segmentation maps were available. We then obtained the predictions for each of the individual KDEs362

using the optimal parameter settings obtained for the concatenated matrix of all KDEs. When testing whether feature maps363

produced significantly different predictions (correlations to the prior KDEs across all the images), we compared the correlations364

of the concatenated feature maps to the concatenated image KDEs, and used 1000 bootstrapped samples of the data in the365

final iteration of the chains to estimate the standard deviation for each of the feature predictions. In addition to showing the366

results for the individual images, we report significant differences between the predictors across all images where applicable in367

the main text.368

Edges. For each image, we extracted 2,400 Canny edge maps, each corresponding to the feature map for a unique set of369

parameter settings (20). The Canny edge detector has four parameters: the first and second threshold for the hysteresis370

procedure, the aperture size of the Sobel filter (which computes the gradient in the image), and the norm of the gradient371

magnitude (either an L2 norm or an L1 norm). Increments of 10 within a range of 0 to 190 were used for the first and second372

parameters, three aperture sizes (3, 5 and 7 pixels) were used for the third parameter, and a Boolean setting indicating which373

norm to use for computing the magnitude was used for the fourth parameter.374

Corners. We obtained 280 feature maps for the Harris corner detector (21). As with the Canny edge maps, each corresponded375

to a unique set of parameter settings from a grid search for its three parameters: the size of the neighborhood considered for376

corner detection, called the “block size”, the aperture size for the Sobel derivative operator, or “k-size”, and a free parameter377

used in the Harris detector equations. For our evaluation, we varied the block size between 2 and 9 pixels, the Sobel filter378

aperture size between 1 and 7 pixels, and the final free parameter between 0.01 and 0.13 at increments of 0.02 (The appropriate379

range for this parameter setting specified in the documentation for the OpenCV implementation (23)).380

Segmentation maps. A subset of the natural images (all except the face and lighthouse images) which were obtained from the381

PASCAL-S images came with segmentation maps (11). We used these images and obtained KDEs using our serial reproduction382

task using the maps instead of the original images, and compared the results to our original KDEs obtained from using the383

original grayscale natural images.384

Centers of mass. We computed centers of mass of the segmented regions by averaging the coordinates of the pixels contained in385

each segmented region.386
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Fixations. Fixation data for the small set of images used were obtained from the PASCAL-S dataset. As explained in (10), for387

each image, 8 subjects performed a “free-viewing” task for 2 seconds. The eye gaze data was recorded using an Eyelink 1000388

eye-tracker, at a sampling rate of 125Hz.389

Disattenuated correlations. For the correlations presented in Fig. S17, we computed disattenuated correlations to account for390

measurement error in the KDEs and discrimination accuracy maps. Given samples X and Y of two random variables X ′391

and Y ′ with correlation rxy and a known (internal) reliability measure for each (rxx and ryy), the estimated disattenuated392

correlation between X ′ and Y ′ is given by rx′y′ = rxy√
rxxryy

. For the prior estimate reliability, we computed rxx as the mean393

correlation of 100 pairs of KDEs fit to 100 random partitions of the data in the last iteration of the chains) for each of the394

images. For the discrimination maps, we computed ryy as the mean correlation of 100 pairs of maps generated from 100 random395

partitions of the data for each of the images. As for the features that were generated from deterministic algorithms, with no396

measurement noise (harris corners, and canny edges), the reliability measure ryy was set to 1.397

“Meaning” and “Graspability” image patch model comparison (Fig. S19). We used the procedure described by (18, 19). For398

each of the tasks (“meaning” and “graspability”), we started by averaging the 10 participant responses for each of the patches,399

and across each of the patch scales (fine and coarse grid scales). Next, we applied a smoothing factor (using Matlab’s imgaussfilt400

function to each of the patches. We selected the smoothing factor that maximized the correlation of the maps to the KDEs we401

obtained for the same images. In addition, we simulated the center bias in overt attention by down-weighting the edges in the402

maps (using a Gaussian kernel with a fixed standard deviation centered in the image). This procedure is illustrated in Fig.403

S19C, and examples are shown in Fig. S19D and E.). Finally we computed disattenuated correlation matrices containing all404

pairwise correlations of the meaning and graspability maps, free fixation, object search, saliency search eye-movement maps,405

and spatial memory KDEs. For the disattenuated correlations, we used reliability estimates obtained for each of the maps by406

averaging the correlations between 100 random splits of the data (split-half reliability measures). Example results are shown in407

Fig. S19E and G. Fig. S19I shows the average over all 8 images. The results replicate the findings by (18, 19), revealing that408

meaning maps with the center bias were predictive of the attention maps. However, we show that none of the maps (with409

or without the center bias) were strongly predictive of the spatial memory KDEs, nor were the attention maps with optimal410

smoothing applied to find the maximal correlation of each map to the KDEs.411

Discrimination Map Estimation from Grid 2AFC Responses (Fig. 3 and S7). We created a regular 2D grid of point locations412

over each image (natural images in Experiments 5-11, as well as the shaded shapes from Experiments 1 and 4). The points413

were separated by 7 pixels in both the horizontal and vertical dimensions. For each point, we generated trial pairs: “same”414

and “shifted” conditions where a point was either presented twice in the same location over the image, or it was shifted in the415

second presentation somewhere over the circumference of a circle of radius 6 pixels centered on the original point location.416

Each experiment contained 160 trial pairs chosen at random from the full grid of trial pairs. We obtained d′ values for each of417

the discrimination grid points by using the 2AFC responses obtained for each as explained above (see section on calculating d′).418

We then convolved the grid of raw d′ values with a Gaussian kernel to maximize the correlation to the corresponding KDE419

values at the same point locations. We imputed missing values as the average of the four nearest neighbor values on the grid.420

Next, we generated full d′ map estimates by interpolating the missing values between the grid points using cubic interpolation.421

Fig. S7 shows the results including the raw d′ grid point values, the smoothed d′ grid point values before the interpolation, and422

the smoothed d′ interpolated maps (discrimination accuracy maps) for two natural images. Also shown are the smooth d′ maps423

obtained for the shape images.424

Models425

In our serial reproduction experiment, the reconstruction becomes the basis of another iteration and this process is repeated. We426

assume that participants use only the current point location as a basis for their perceptual decision (the Markovian assumption,427

see Discussion). Formally, the transmission chain can be described in terms of a sequence of random variables:428

. . .→ St → Tt → Rt = St+1 → . . . [1]429

where St, Tt and Rt are the veridical location, sensory encoded representation, and the inferred location at step t, respectively430

(see Fig. S2, and Fig. S4). The inferred location in our model is assumed to be sampled from the posterior P (S|T ), which431

depends on both the prior and the likelihood: P (S|T ) ∝ P (T |S)P (S), as schematically illustrated in Fig. S2 and Fig. S4. Fig.432

2A shows the combined effect of encoding P (T |S) and decoding P (R|T ). Near a mode in the prior, the posterior becomes433

distorted, and its mode is shifted towards the mode of the prior. The net effect of both encoding and decoding produces a434

bias (this is shown in Fig. 2A and C). Far from a mode in the prior, the posterior becomes less distorted, and as a result the435

reproduction bias is smaller (Fig. 2A and C). Without any further assumptions, one can show that the chain approximates a436

Gibbs sampler on the joint distribution of T and S, and that it converges to a sample from the prior p(S) (see methods for a437

direct proof and discussion of a similar but not identical model (24)). This is significant, because it means that distributions of438

visuospatial memory priors can be approximated directly by iterating the task.439

However, Bayesian perception leaves open the question of the exact form of the likelihood and the prior. In the case of fixed440

encoding, in its simplest form the likelihood is additive, constant over the image, and Gaussian:441
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p(T = t|S = s) = G(t, s, σ2 · I), [2]442

where σ is the noise and I is the identity matrix, and G(x, µ,Σ) is the Gaussian probability density evaluated at point x with443

mean µ and covariance matrix Σ. This implies that the noise’s covariance structure is the same regardless of location (Fig.444

S4D). The net effect of encoding and decoding (the reconstructed point) results in a small bias (see Fig. 2A). Note that445

the only degree of freedom of the model is the magnitude of the noise σ since we assume that the prior is given and can be446

estimated from the data of the final iteration of the transmission chains.447

Having a variable prior and a fixed likelihood implies that discrimination ability is reduced near the modes of the prior and448

increased between the modes. This “perceptual magnet effect” is due to the contraction of the inferred locations towards the449

modes of the prior (Fig. 2A). This effect can be evaluated independently of the serial reproduction results through experiments450

of discrimination accuracy using the same stimuli, where the effect predicts a negative correlation between prior density in the451

serial reproduction experiment and discrimination accuracy in the discrimination experiment.452

An alternative to the fixed encoding model, is a variable precision model where precision varies over the image. A simple453

non-Bayesian version of this model assumes that a reproduction is a symmetric Gaussian variable with precision 1/σ(s) that454

varies from location to location in the image:455

p(R = r|S = s) = G(r, s, σ(s)2 · I), [3]456

This model captures variable precision over the image because of changes in σ(s), which predicts increased discrimination457

accuracy in the “absorbing states,” which are the regions in the image where σ(s) is smallest. As such, the symmetric variable458

precision model is a non-Bayesian model (there is no inference step), and the reproduction distribution is explicitly specified a459

priori. This model explains the transmission chain results as a random walk with absorbing states near the landmarks, where460

σ(s) is smallest. This model has predictions that deviate from the Bayesian models with respect to single-trial biases: It does461

not predict that responses will tend to be oriented towards the nearest landmark. However, we discuss evidence indicating that462

single-trial biases are clearly present in the data (Fig. S3). This calls for a model that can produce both variable precision and463

single-trial biases.464

One option is to extend the non-Bayesian model by specifying an additional variable bias function b(s) for each point in the465

image:466

p(R = r|S = s) = G(r, s+ b(s), σ(s)2 · I), [4]467

However this model requires specifying both b(s) and σ(s), increasing the number of parameters of the model significantly,468

as both these functions need to be defined for all locations in the image. In addition, this model is not comparable with the469

fixed-precision model described above and often used in previous Bayesian accounts of spatial memory biases (25).470

However, there is a relatively recent Bayesian formulation of variable precision that captures “anti-Bayesian” phenomena471

(26, 27), namely improved discrimination near the modes of the prior. This formulation predicts both non-zero single-trial472

biases and variable precision without adding any additional degrees of freedom to the model. This model was described for the473

one-dimensional case in (26, 27) and extended in the present work to higher-dimensional cases. The model predictions are474

constrained because the model makes a strong assumption regarding the relation between the likelihood and the prior.475

According to this model, perceptual biases emerge because of variations in internal noise (precision) due to a non-isotropic476

likelihood function (Fig. S4C). Moreover, this model provides an alternative account of the prior’s origin. A prior distribution477

over locations in an image may result from selective allocation of coding resources to different visual regions during encoding, a478

process that produces a transformed internal representation. We assume that an initial sensory parsing of an image is used to479

determine a coordinate transformation F , which maps Euclidean distances to an internal coordinate system (psychological480

space) in just-noticeable difference (JND) units (see Fig. 2C and Fig. S4A-C). A perceived point location in this psychological481

space F (T ) becomes the following in the external coordinate system:482

T = F−1(F (S) + n), [5]483

where F (S) is the deterministic function and n ∼ N(0, σ2 · I).484

The transformation F can be interpreted as one that efficiently maps Euclidean distance units into Just-Noticeable-Difference485

(JND) distance units, and the inverse F−1 transforms the internal representation back into a Euclidean coordinate representation486

(see Fig. 2C).487

Fig. 2C illustrates why the “uniform” internal space (in JND units) produces a shift toward the (landmark). In internal space,488

the posterior is symmetric and Gaussian. However, when it is projected to external space it becomes biased towards the489

mode because the higher density region accumulates mass closer to the landmark. As a result, the averaged reproduction is490

shifted toward the landmark (left side of Fig. 2C). Far away from the mode (right side of Fig. 2C), the distortion is much less491

pronounced and the bias is smaller.492

This geometry also explains why discrimination is higher near the landmarks (modes): because pairs of points are perceived to493

be farther apart in internal units when they are near a mode, as opposed to far from a mode (even when the pairs of points are494

the exact same distance apart in Euclidean distance units), they are also easier to discriminate given some perceptual noise495

magnitude σ. This is illustrated in Fig. 2C. More specifically, near a landmark the posteriors are narrow in external units496

(with only a small bias toward the mode). The net result is increased discriminability (despite a small bias towards the mode).497
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Far away from the mode, the distortion is less pronounced and the posterior densities are more dispersed, resulting in reduced498

discriminability. Note that of the two competing effects—the bias, and the reduction in variance, the reduction in the variance499

is the dominant effect, which is why discrimination increases. This prediction is not obvious a priori, and comes from the500

specific mathematics described here. In the case of fixed encoding, there is no variance shrinkage and therefore the net effect is501

a reduction in discrimination accuracy, since point locations with equal variance that are perceived to be closer together will be502

harder to tell apart.503

The transformation F can also be interpreted as one that efficiently maps the external coordinate system (Euclidean space504

Fig. S4B) into an internal coordinate system (psychological space Fig. S4B) in just-noticeable difference (JND) units. (This505

“internal geometry” is illustrated in Fig. S4A-B). In the context of our task, the intuition is as follows: Efficient variations506

in internal noise encode some visual regions (visuospatial anchors) with higher resolution, resulting in a dilation of these507

regions. In internal units, where regular intervals correspond to units of just-noticeable difference, perceptual noise is isotropic508

and Gaussian. However, because of the inverse F−1, the transformation of the isotropic perceptual noise into physical space509

results in a non-isotropic likelihood (see Fig. S4B). This idea is similar to how variations in perceptual sensitivity are reflected510

in neural representations such as the somatosensory homunculus (28) or retinotopic map (29), where increased resolution511

is imparted to physical extremities or areas in the visual field that are over-represented by the brain. Note that given the512

prior, the only degree of freedom of this model is the variance of the noise σ, because the transformation F can be uniquely513

determined from the prior, and vice-versa. In addition, the transformation F determines the likelihood function p(T |S) (via514

equation 5), and the posterior p(S|T ) (see methods for formula for the posterior). From this we can compute the reproduction515

P (R|S) which is displayed in Fig. 2C.516

To summarize, both models assume an initial step that processes the image content. In the case of the fixed-encoding model,517

this step generates a belief state of the point locations (prior). This prior is then used during perceptual inference. In the case518

of the efficient-encoding model, the initial processing step is used to produce an internal coordinate transformation during519

encoding. This coordinate transformation then determines perceptual inference during decoding.520

Notably, the fixed-encoding model predicts a negative correlation between the prior and discrimination sensitivity measured521

in a discrimination task (Fig. 2D), and (26, 27). In contrast, the efficient-encoding model predicts a positive correlation522

in the very same experiments (Fig. 2E). We evaluated the models by fitting both to the results of the serial reproduction523

experiments and testing their discrimination accuracy predictions. We found that the efficient-encoding model predicts detailed524

discrimination accuracy maps, and higher accuracy in the modes (See Fig. 3).525

Fixed-encoding model. Given a prior, the fixed-encoding model has one degree of freedom σ, which corresponds to the noise526

(in (26) this refers to low-level sensory noise). In this case, the likelihood is p(T = t|S = s) = G(t, s, σ2 · I), where I is the527

identity matrix and G(x, µ,Σ) is the pdf at point x of a Gaussian distribution with mean µ and covariance matrix Σ. Given528

the likelihood and the prior and the noise magnitude the dynamics of the model are fully determined from the equations in529

methods subsection “Bayesian model of serial reproduction and discrimination experiments” and can be computed numerically530

as explained below.531

Efficient-encoding model. We assume that the prior and likelihood originate from a coordinate change given by: T = F−1(F (S)+n),532

where F is a deterministic function mapping Euclidean (veridical) coordinates into an internal coordinate system in which the533

prior is uniform, the likelihood is symmetric and Gaussian, and n ∼ N(0, σ2 · I). In our case we are given the prior from the534

transmission chain p(S) and we would like to compute the transformation F and the likelihood P (T |S). In the transformed535

space, the likelihood is symmetric, isotropic and Gaussian. In the external coordinate system given by F−1 (see Fig. S4B) the536

likelihood is given by:537

p(T = t|S = s) = p(F−1(F (S) + n) = t|S = s)
= G(F (t), F (s), σ2 · I)

[6]538

In the one dimensional case, F is the cumulative distribution associated with the prior p(S) (as computed in (26)): F (x) =539 ∫ x

∞ p(S = s)ds. The prior can be computed from the transformation by taking the derivative.540

In this paper, we generalize this approach to the two-dimensional case. For simplicity, we assume that the prior is a probability541

density with a compact support in R2. We assume that F is a mapping from Euclidean space to a Riemannian manifold542

F : R2 →M where areas and distances on the manifold dilate and contract such that the prior becomes uniform (Fig. S4A-B;543

(30)). In this case, we can compute F from the prior (and vice versa) from noticing that the probability associated with544

a differential area is invariant under coordinate transformations: p(S′ = s′)ds′1ds′2 = p(S = s)ds1ds2, where S′ = F (S).545

Consequently, if we choose:546

ds′i =
√
P (S = s)dsi [7]547

we obtain a uniform distribution in the latent space.548

We model noise in the transformed space by computing a Gaussian distribution in the transformed coordinate system by549

defining the following probability density function (30)550

p(s1, s2) = k · exp
(
−dist(s1, s2)

2σ2

2)
, [8]551
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where dist(s1, s2) is the geodesic distance between s2 and s1 on M , k is a normalization constant, and σ is the standard552

deviation of the noise. σ is the only degree of freedom of the model (given the prior). The inverse transformation of this isotropic553

distribution by F−1 is typically asymmetric and non-isotropic (Fig. S4B), and its local variability is inversely proportional to554

the prior density. In other words, the precision is higher in high-density regions under the prior.555

Numerical computation of the likelihood function of the efficient-encoding model. We compute the likelihood p(T |S) expressed in the556

discrete set ({xi}i=1,...,Nd) of Nd points (where d is the dimension). In the one-dimensional case, F is the cumulative557

distribution of p(S) and can be expressed as F (xi) = Σj≤ip(S = xj). From equation 6 we can compute the likelihood:558

p(T = xi|S = xj) = G(F (xi), F (xj), σ2 · I). In the two-dimensional case, we define a regular grid on R2. We use a fixed559

resolution within a finite domain that includes the support of p(S). Using a technique similar to Isomap (31), we compute a560

graph in which each grid point si,j is associated with the i, j location within the regular grid. We define local distances on the561

graph d(si,j , si+1,j) = d(si,j , si,j+1) =
√
p(S = si,j). This provides a discrete estimate to Equation 7 . We then estimated the562

geodesic distance dist(si,j , sk,l) as the shortest path on the grid using the Floyd-Warshall algorithm (31). After all pairwise563

distances were computed, we computed the probability density implied by equation 8 numerically, noting that the unit area564

dA(si,j) was dilated by exactly a factor of p(si,j). This results in the following explicit formula for the likelihood of the model:565

p(F (S = si,j)|F (S = sk,l)) = k · exp
(
−dist(si,j , sk,l)2

2σ2

)
· p(si,j) [9]566

where k is computed to satisfy the normalization constraint. This computation fully specified the likelihood function. We then567

compute the posterior by Bayesian inference. Because this model significantly contracts areas with very small density under568

the prior, this could cause numerical instabilities. Therefore, we modified the prior used for the numerical computation slightly.569

Instead of the prior measured from the transmission chain experiment (P (S)), we used p′(S), given by p′(S) = c ·max(ε, p(S)),570

where c is a normalization constant. In our simulations, ε was determined to be 1/100 of the maximal value of a uniform571

density function over the domain of p(S), c was determined by numerical integration. Note that p′(S) and P (S) only deviate572

slightly in low probability areas of the space.573

Efficient coding and previous work. Wei and Stocker (26, 32) derive the formula for the transformation F based on principles of574

efficient coding. According to their approach, the sensory encoding T of the stimulus S is determined by a trade-off between575

preserving as much information as possible (maximizing the mutual information) and a limitation on the capacity of sensory576

encoding (the constraint on the Fisher information). An optimum is achieved when this trade-off results in a coordinate system577

change in which the Fisher information is constant. This means that the coding noise is a result of an efficient compression of578

information that maximally preserves the natural statistics in the prior during the coding process.579

Formally, we denote by J(S) the Fisher information:580

J(S = s) =
∫ (

∂lnp(T = t|S = s)
∂s

)2

p(T = t|S = s)dt [10]581

Wei and Stocker (26, 33) show that the mutual information between the stimulus and the sensory representation I(S;T ) can582

be maximized under the following constraints:583

C =
∫

s

√
J(S = s)ds ≤ C0, [11]584

where C0 is some limited capacity if S has the following form: T = F−1(F (S) + n). The end-result of this analysis is that in585

the transformed space the prior is uniform. This simple result has an additional justification: in the transformed space the586

prior is non-informative (it is a Jeffreys prior see (34)). This holds true since if F maps the prior to a uniform distribution then587

the Fisher information is also constant (26) which satisfies the condition for a Jeffreys prior:588

P (F (S)) ∝
√
|det(J(S))| [12]589

Discrimination simulations (Fig. 3D). In this analysis, we take as a starting point an estimate for the prior (taken from the last590

iteration of the transmission chain experiment) in order to predict the results of a separate discrimination experiment. Note591

that each model (fixed and efficient-encoding) has in this case just one degree of freedom (the magnitude of the model’s noise592

σ). From this we can compute the d′ values for the entire image numerically using Equation 7.593

In order to produce the simulated d′ predictions for Fig. 3D, we performed a grid search over the range of σ = 0− 0.08594

(relative to an image size of 1). For each value we computed the prediction of the discrimination map and the correlation595

between the last iteration of the chain experiment and the simulated discrimination experiment. Error bars (blue and red596

regions) show the standard deviations of the predictions over all the images for each model. Due to edge artifacts produced by597

the fixed-encoding model’s predictions, we exclude values within 6 pixels from the edges of the model predictions as well as the598

empirical d′ maps in order to make a fair comparison between the models and the data. We then recomputed the adjusted599

correlations between the simulated and real discrimination data and the priors for each of the images, and this reduced the600

measured correlations for the empirical data (which were in the range r = 0.45− 0.63, see green line in Fig. 3D). However,601

the correlations between the empirical d′ data and the priors after this adjustment were still highly positive (p < 0.001 via602
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bootstrapping), matching the efficient-encoding model predictions. The correlations of the efficient-encoding model with the603

exclusion were similar to the ones without the exclusion.604

Importantly, both models provide a good fit to the empirical chain dynamics given the prior when iterated forward twenty605

times (Fig. 3A and SI Appendix Fig. S8). Specifically, with the right noise magnitude, both models predict the convergence606

speed to the prior measured as the Jensen–Shannon divergence (see section on the JSD for formal definition) distance to the607

prior at each iteration (Fig. S8D), and show consistency with each iteration of the KDE maps for each iteration. To compute the608

convergence speed of the model data to the prior we estimate the vector of JSD distances {c′j}j=0,1,...,20 between each simulated609

distribution of each iteration P ′j , and the prior P : c′j = JSD(P ′j , P ), where iteration 0 is defined as the initial distribution of610

the stimulus at iteration 1. Similarly, we can compute the convergence speed for the real data {cj}j=0,1,...,20 (see Fig. S5 and611

SI Appendix for other convergence measures). Fig. S8D shows a plot of this vector for the face image. We fit each model612

by varying σ so that the L2 distance between the entire vector of distances is minimized: score(P ′j) = Σj=0,1,...,20(c′j − cj)2,613

where c and c′ are the data and model distances from the prior (for all iterations). We performed a grid search over the614

noise magnitude. The best fits are displayed in Fig. 3A and SI Appendix Fig. S8. However, only the efficient-encoding615

model predicts positive correlations between the serial reproduction results and the discrimination experiments (Fig. 3 and SI616

Appendix Fig. S8A-C). Note that the correlations predicted from the efficient-encoding model were slightly larger than the ones617

predicted by the empirical discrimination data, possibly due to the empirical reliability of the discrimination map estimates618

(see analysis of disattenuated correlations in the results section). We also cannot rule out that some small discrepancy between619

the model predictions and the empirical results are due to perceptual factors that were not modeled in the simulation, such as620

interference between the memory traces of the stimulus images in the trial sequence or production noise. It is worth noting621

that the fixed-encoding model with the noise magnitude fitted to the results from the serial reproduction experiments predicts622

discrimination accuracy maps that deviate from the actual data by simulating a much smaller dynamic range in d′ values, and623

significant edge artifacts. Neither the data nor the efficient-encoding model produced these artifacts (see SI Appendix Fig. S8).624

Analysis of consistency of the response bias. Single-trial biases correspond to people’s tendency to produce responses that are625

consistently biased towards a nearby landmark, and that as a result, nearby responses tend to point in the same direction626

towards the landmark. The symmetric variable precision model predicts that responses are unbiased with respect to the627

stimulus. Single-trial biases have the following implication for our results: we denote by B the difference between a response R628

and a stimulus S. From equation 3, we see that B will be a random sample with 0 mean. If the symmetric variable precision629

model is accurate, this means that if we take neighboring data points in our experiment, we should expect that the difference630

between the stimulus and response locations will NOT produce response vectors that point in the same direction as they are631

expected to be independent samples from B (Fig. S3B). On the other hand, if there is a bias (equation 4), where b(s) is a632

sufficiently large bias parameter that can vary from place to place in the image, we should expect that nearby points with633

similar b(s) will be biased approximately toward the same direction, for example towards a nearby landmark (see Fig. S3A).634

To quantify the presence of single-trial biases, we first binned all the data points into bins that subtended 0.04 of the image635

width and height. We used all the data across all iterations and within each bin we averaged the bias (the differences between636

response locations and stimulus locations). We only considered bins that contained at least 4 response and stimulus pairs637

where the estimates are reliable. According to the symmetric variable precision model, we expect these averages to have a638

random direction and as a consequence, that average responses of adjacent bins will be uncorrelated. However, if there are639

large single-trial biases then we would expect a different behavior. We would expect the average bias difference vectors in640

adjacent bins to be pointing consistently in approximately the same direction.641

Fig. S3C shows the actual data from the triangle experiment (where the landmark directions are easy to see). We average the642

response biases inside each bin and plot the direction of the bias (yellow arrows). The empirical data clearly show that average643

responses in adjacent bins are biased in similar directions. It is visually apparent that biases point toward the landmarks (the644

modes near the triangle’s vertices). On the other hand, the symmetric variable precision model predicts random directions645

(Fig. S3D), as expected. In these simulations we used variance σ(s)2 inversely proportional to the density of the end-state of646

the serial reproduction experiment, but note that this model would produce random directions regardless of the form and647

magnitude of the variance. In comparison, the efficient encoding model (with noise value of σ = 0.01) predicts consistent biases648

towards the landmarks (Fig. S3E), and it is visually apparent that the model produces single-trial biases that are similar in649

that respect to the actual human data.650

We quantify consistent single-trial biases by measuring the angular differences between the directions of average response651

vectors in adjacent bins both vertically and horizontally. Fig. S3F shows a histogram of these angular differences. We see that652

the data (continuous green line) show a clear peak at small angles (p < 0.001 via bootstrapping). However, the symmetric653

variable precision (flat dashed cyan line) predicts a flat histogram of angular differences that is not different from the random654

distribution (gray). In contrast, the predictions of the efficient encoding model (dashed dark blue line) show a clear peak for655

small angular differences, which is consistent with the data. We repeated the analysis for all 7 natural images, and obtained656

similar results (Fig. S3G).657

To compute statistical significance of the magnitude of the peak in the histograms and to explore the effect of the noise658

parameter sigma in both the symmetric variable precision and efficient encoding models, we computed the probability of small659

angular differences within +/-12 degrees as shown in between the dashed vertical lines in Fig. S3F for the triangle image.660

We plotted these values as a function of the noise parameter for all natural images and shapes (Fig. S3H). The data show661

significant small angular differences (horizontal green lines in Fig. S3H). The probability of small angular differences (phases)662

predicted by the efficient encoding model (dashed dark blue lines) varies with the noise magnitude, but the symmetric variable663
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precision model (see 7 nearly overlapping cyan lines) predicts no phase consistency regardless of the noise magnitude.664
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Fig. S1. Serial reproduction experiment designs: The between-subject and within-subject designs. A. Between-subject design. Each chain was composed of nodes representing
individual trials. Each trial contained a stimulus Si,j , delay, and response Ri,j . Chains contained N = 20 iterations. Each chain began with an initial seed point location
sampled from a uniform distribution, and subsequent nodes in the chain contained the response to the previous node as the stimulus (the “telephone game” procedure).
Participants were randomly assigned to trials in different chains and never participated in the same chain twice. B. Within-subject design. Participants completed entire chains,
alternating between nodes in their assigned chains. In this design, no chain contained data from more than a single participant.
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Fig. S2. A. Spatial memory serial reproduction process. A stimulus point location St is perceived as a noisy percept Tt and reproduced as a location Rt. This reproduced
point becomes the stimulus for the next participant in the serial reproduction chain (St+1). B. Bayesian perception. A stimulus location is remembered following an inference
process during which a noisy percept of the actual location (the likelihood P (Tt|St), purple dotted line) is integrated with a belief state about probable point locations (the prior
P (St), dotted black line) resulting in the posterior (P (Rt|Tt), blue dotted line). The reconstruction (the net result of the encoding and decoding) P (Rt|St) is shown in the
solid green line. A stimulus point location (red dot) near a landmark (green dot) will tend to be misremembered with a bias towards the landmark, and on average will be
reproduced closer to the landmark (pink dot).
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Fig. S3. Analysis of the consistency of the bias. A. Prediction for consistent biases. Average response vectors (black arrows) for nearby point reconstructions (white dots with
red outline) will tend to point in the same direction. B. Prediction for inconsistent (random) biases in responses. Average response vectors (black arrows) for nearby point
reconstructions will not point in the same direction. C. Coherent biases in the triangle data. We averaged all differences between response and stimulus pairs across all
iterations that fell within bins that subtended 0.04 of the image width and height, in a grid over the image. We computed the direction of the average bias (yellow arrows). The
direction vectors are plotted on top of the KDE of the last iteration, which we downsampled to the grid resolution. D. The symmetric variable precision model predictions.
Directions are incoherent (random). E. The efficient encoding model predictions. The model qualitatively replicates the pattern seen in the data. F. Quantification of the bias
consistency. Angular difference histogram for the triangle image. The x-axis shows the angular difference (in degrees) of the average directions of the biases in adjacent bins.
The angular differences for the actual data (green line) and efficient encoding model (simulated dashed dark blue line) are concentrated near 0 degrees, showing significant
consistent biases (p < 0.001 via bootstrapping). The symmetric variable precision model (cyan line) is not different from the uniform distribution (gray area). Shaded areas
show one standard deviation of the histograms computed by simulating the models 1000 times. G. Results for all natural images. H. Small angular differences (probability of
angular differences between -12 and 12 degrees) as a function of model and noise magnitude. The efficient encoding model (dashed blue lines) predicts different levels of bias
consistency depending on the noise magnitude but the symmetric variable precision model (overlapping cyan lines) predicts random phases regardless of noise magnitude that
are not different from the uniform distribution (shaded gray area).
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Fig. S4. Rational models of visuospatial memory. A. The efficient-encoding model. Variations in sensory noise encode informative visual regions with higher resolution,
resulting in warped internal representations where some visual regions are over-represented relative to others (“internal geometry” of the psychological representation produced
by the function F ). In internal just-noticeable difference (JND) units, perceptual noise is isotropic and Gaussian, and the prior is uniform. The distortion of the internal scene
representation is inversely proportional to the density in the prior. In panels A-D, original location (red point) is inferred by combining the prior with a noisy percept (yellow point),
and the participant produces a biased reconstruction (pink point). B. Two equivalent perspectives on the psychological representation. According to the model, the same internal
distribution can be described in two equivalent coordinate systems. The deterministic function F maps Euclidean distances to a representation in internal JND distance units,
while F−1 inverts this representation, transforming JNDs back to Euclidean distances (Euclidean space). In JND units the prior is uniform and the likelihood is Gaussian. This
implies that in the Euclidean space, the prior is non-uniform and the likelihood varies across parts of the image. C. The “efficient-encoding” model. Unlike in the “fixed-encoding”
model, encoding precision varies systematically depending on the location in the visual scene. D. The “fixed-encoding” model. Encoding precision is fixed throughout the image.
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Fig. S5. Convergence using JSD. The shaded regions correspond to standard deviations from 1000 KDEs obtained from bootstrapped samples. We denote by “iteration 0” the
initial seed distribution. A. JSDs between distributions of each iteration and the final iteration distributions. B. JSDs between subsequent iterations.
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Fig. S6. A. Copying accuracy, computed by the root mean squared Euclidean distance (in normalized units). The shaded regions correspond to standard deviations from 1000
datasets randomized with replacement from the experimental data. We denote by iteration 0 the initial seed distribution. B. Deviation from uniformity. JSD distance from
randomized samples of a uniform distribution. The shaded regions correspond to standard deviations from 1000 KDEs obtained from bootstrapped samples.
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Fig. S7. Discrimination maps: Natural images and shape images. A. Discrimination percent accuracy for “same” and “shifted” conditions for the plane image (top left), including
raw d′ grid point values, smoothed d′ in top right row, plotted over the image, and shown without the image (in the second row). The interpolated d′ map is also shown in the
far right column, overlayed over the image, and without the image. Examples are also shown for the boat image. B. Smoothed d′ maps for shape images.
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Fig. S8. Representative example of the simulated chain dynamics for the efficient-encoding and fixed-encoding models, and real chain results (face image). We also show
simulated d′ maps that are predicted from the serial reproduction experiment and compare them to the actual d′ results. A. Dynamics of the empirical serial reproduction
experiment. Each panel shows a KDE fit to the point locations at each iteration, where iteration 0 corresponds to the initial uniform distribution. Also shown are the smoothed
discrimination experiment d′ results. Discrimination is positively correlated with the KDE fit to the data in the last iteration of the chains. B. Simulation of the chain dynamics
using the efficient-encoding model. The input for the simulation was the empirical prior obtained from the serial reproduction experiment (KDE fit to the data in the last iteration,
shown inside the dotted red bounding box in A). C. Dynamic simulation for the fixed-encoding model. D. Fitting the noise parameters based on the serial reproduction experiment.
The graph shows the JSD distance between the prior (final iteration KDE), and the model predictions at each iteration (blue and red lines), and empirical chain iterations
(green line). We performed a grid search over the magnitudes of the noise parameter (σ). We selected the value for the noise magnitude that produced chain dynamics that
most closely approximated the empirical dynamics (green curve) in panel D. The best values were 0.036 and 0.0235 for the efficient encoding and fixed encoding model,
respectively. E. Simulated d′ results for the efficient-encoding and fixed-encoding models and empirical d′ maps. Top row shows empirical d′ results and correlations to
the corresponding priors. Second row shows the efficient-encoding model predictions. Correlations of the predicted discrimination maps to the prior KDEs (displayed above
each image) are all positive for the efficient-encoding model. Bottom row shows discrimination predictions of the fixed-encoding model. Correlations between the predicted
discrimination maps and the prior KDEs are all negative at the fitted noise level for the fixed-encoding model. Note that the fixed-encoding model produced edge artifacts (which
were not observed in the data). To facilitate the comparison, we excluded values 6 pixels from the edges of the predicted discrimination maps when computing the correlations
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Fig. S9. Encoding precision direct experimental manipulations. A. Encoding precision stimulus manipulations. We repeated the serial reproduction experiment with
manipulations to the image by adding Gaussian noise or reducing the contrast. B. Timing manipulations. We repeated the serial reproduction experiment with a reduced
presentation period (200ms instead of 1000ms), or a longer delay period (2000ms instead of 1000ms). C. Other manipulations: We tested the Markovian assumption by
interleaving experimental trials with dummy trials in which points where presented in random locations. D. Other manipulations: payoff experiment. We tested the effect of
introducing a payoff to the task by rewarding accurate responses to the right of the original stimulus with double the bonus awarded to accurate responses to the left of the
original stimulus. E. The KDE and scatterplot of the original serial reproduction experiment results. F. Results of the precision, delay and other manipulations: scatterplots and
KDEs. G. JSD differences comparing KDEs from each of the manipulations to the original results. Results show differences are significantly different from zero (p < 0.001) in
the case of the precision manipulations (blue bars), and not significantly different from zero in the case of the delay and other manipulations (red and gray bars, respectively).
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Fig. S10. A. Encoding and reproduction experiments. In order to confirm that biases emerge during the encoding phase, and not during the reproduction phase, we compared
the results of substituting a natural image with a blank (uniform gray) probe image at test time, or during the encoding phase. A. The experimental design of the original
experiment, as well as the two manipulations, and results using a 1000 ms encoding duration, or a short 300 ms encoding duration. Results clearly show that the prior is biased
towards the landmarks of the images presented during the encoding phase and not the reproduction phase. The results of a control experiment, in which the blank gray frame
was presented both during the encoding phase and the reproduction phase is also shown. B. Forward and backward noise masking experimental design and results. We
introduced forward and backward masking to the encoding phase of the original experimental design, and reduced the encoding time to 300 ms instead of the full 1000 ms. The
masks were generated as a sequence of random 1/f “pink” noise images. We also ran an experiment in which we substituted the natural image with a blank image for the
reproduction (response) phase. The results of the first experiment show that masking had little to no effect on the outcome of the experiment relative to the same experiment
without masking. Finally, the results of the second experiment using a blank frame during the response phase reveals that masking had little to no effect on the outcome of the
experiment relative to the same experiment without the masking. These findings suggest that overt attention in the form of eye movements during encoding are likely not
responsible for the patterns of biases. They also show that eye-movements at test time cannot explain the patterns of biases either.
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Fig. S11. A. Spatial manipulation of encoding precision. The apparent increase in peaks in spatial memory KDEs for more complex regular polygons led us to consider
changes to the internal representation in the limit, as the regular polygons become more complex and start to approximate a circle. Each panel shows the non-parametric kernel
density estimates (KDE) of the serial reproduction results obtained using regular polygon images with an increasing number of corners. As the image complexity increases, the
KDE structures begin to resemble the results for the circle. B. Temporal encoding precision manipulation: When the presentation time of a 19-sided regular polygon stimulus
image is reduced from 1000 to 300 ms, the resulting biases are significantly simplified towards the spatial memory representation for a circle. The barplot shows the relative
differences in the effect of changing the encoding time on the KDE structure using the JSD. All distances were computed as the JSD distances between the final distribution of
points for both manipulations and the final distribution for a shaded circle. Error bars represent the standard deviation of the distance estimated by bootstrapping (after applying
the Bonferroni correction; *: p < .05; **: p < .01; ***: p < .001).
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Fig. S12. Category Adjustment Model (CAM) estimates for simple shape images. The CAM asserts that each reconstruction from memory linearly interpolates between the
stimulus and a prototype (see methods). We fit the CAM using 4 prototype location terms to the data for each of the shapes, using the exact same procedure as (5). We used all
initial point locations and the positions in the first iteration for each of the images. B. Scatter plots showing the superposition of responses across all iterations of the chains for
each of the shapes, and the corresponding Kernel Density Estimates (KDEs).
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Fig. S13. Category Adjustment Model (CAM). This model asserts that each reconstruction from memory linearly interpolates between the stimulus and a prototype (see
methods). A. We fit the CAM using 5, 10, and 20 prototype location terms to the data for each of the natural images. We used all initial point locations and the positions in the
first iteration for each of the images. B. Correlations of KDEs fit to the CAM point-estimates to KDEs of the chain data are shown, as well as correlations between chain KDEs
and smoothed discrimination d′ maps for comparison. In some cases, the model produced estimates of the prototype locations that were nearly overlapping.
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Fig. S14. CAM and serial reproduction chain reliability analysis. A. For a given random partition of the data into two equal splits (split 1 in red, and split 2 in blue), we fit a KDE
to the 20th iteration data in split 1 and compared it to a KDE fit to data in K chain samples from split 2, as well as CAM estimates fit to the same K chain samples in split 2. B.
Results comparing the internal reliability of the KDEs fit to random splits of the data (blue line), as well as the reliability of the CAM estimates, using 5 (cyan line), 10 (green line),
and 20 (red line) prototypes, for each value of K samples from the 2nd partition of 250 chains. The shaded error bars correspond to 100 random partitions of the full chains into
two equal parts. For all values of K, the internal reliability estimates of the KDEs were significantly higher than reliability of the CAM estimates. The x-axis in the graph is
normalized according to the number of participant trials used for the estimation (equating for the fact that the serial reproduction estimates are made from multiple iterations,
and therefore more data). The analysis indicates that even when the two methods are equated for the amount of data used, the serial reproduction results produce more
reliable estimates.
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Fig. S15. KDE predictions using Centers of Mass (COM), Fixations, and Segmentations. A. Eye-movements obtained for the natural images, centers of mass (COM) computed
as the average x and y coordinate values inside each of the human-made segmentations of the objects in the images, and transmission chain results (KDEs) obtained using
segmentation images instead of original grayscale images. B and C. Model comparison comparing discrimination maps, KDEs fit to transmission chain data obtained for
segmentation images, COM, and fixations. The model comparison shows that the COMs and fixations were the weakest predictors of the original image KDEs
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Fig. S16. Centers of Mass (COM) are poor predictors of spatial memory priors obtained via serial reproduction. A. Images were landscape images used in previous work, and
segmentations were obtained using k-means clustering of the RGB values of the original color images, using the same procedure described by (12–14). Two examples of the
segmentations are shown for both images. B. Centers of mass (COM) were computed by averaging the x and y coordinates of the pixels in each of the segmented regions. C.
KDEs obtained using our serial reproduction results for the grasycale images as well as the segmentation images. Also shown are the COM maps obtained by smoothing the
COM with an optimal smoothing parameter (maximizing its correlation to the KDEs obtained for the original grayscale images). D. Barplots showing the optimal performance of
the COM maps, and the KDEs fit to the results from the serial reproduction chains using the segmentation images used for computing the centers of mass. Results clearly show
that COM maps are poor predictors of the KDEs.
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Fig. S17. Model comparison using attenuation. Discrimination accuracy maps are more predictive of the spatial memory KDEs than optimized corner (Harris) and edge (Canny)
feature detectors implemented using (23). We performed a detailed grid search over the allowable parameter settings for both the Harris corner and Canny edge detectors and
selected the settings that maximized the correlations to the KDEs. A. feature maps (with optimal smoothing) displayed over the images. Also shown are correlations with
corrections for attenuation over each map. B. Barplots of the disattenuated correlations. Errorbars represent 1000 bootstrapped samples of the chain data. C. Chain results for
a square with an illusory upper-right-hand corner and a face with an illusory right eye. Transmission-chain results reveal biases concentrated around the illusory regions: a
pattern around the upper right-hand illusory corner of the square that is largely identical to the pattern we observe with the original image, as well as biases centered over the
illusory eye in the face image.
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Fig. S18. Overt attention and spatial memory priors. Spatial memory KDEs, free fixations, cued object search fixations, and saliency search fixations. A. Fixation maps with
optimal smoothing for free-fixation, cued object search, and saliency search tasks are not predictive of spatial memory priors. We show all the fixation maps and spatial memory
KDEs for 8 images taken from the database used in (4). We applied a smoothing parameter to all the maps using Matlab’s imgaussfilt function. We selected the smoothing
parameter that maximized the correlations of the maps to the spatial memory KDEs. Also shown are correlation matrices with disattenuated correlations. We computed the
disattenuated correlations using internal reliability estimates for each of the fixation maps and the chain data. We estimated the internal reliability by averaging the correlations
between 100 split-half pairs of the data, for each of the predictors.
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Fig. S19. Patch ratings experiments. We reproduced the experiments by (18, 19) for 8 images for which detailed eye-movement fixation data were available for free-viewing,
cued object search and saliency search tasks (4). A. We extracted circular image patches from each of the images using fine and coarse spatial grids. B. We obtained 10
ratings of the “informativeness” and “graspability” for each of the patches on AMT in two separate experiments. C. For each experiment (“informativeness” vs. “graspability”), we
averaged the ratings for each of the patches, and across fine and coarse scales. We then applied an optimal smoothing parameter (to maximize the correlation of the resulting
maps to the KDEs). Finally, we down-weighted the edges of the maps to simulate the center bias in overt attention, using the same procedure as (18, 19). D. Example fixation
maps, meaning and graspability maps, centered meaning and graspability maps, and KDE results. E. Disattenuated correlation matrix showing that neither the fixations, nor the
meaning and graspability maps (with and without the center bias) are predictive of the spatial memory prior (Chain KDE) for the example shown in D. F-G shows another
representative example, with similar results. H. All chain KDEs for the 8 images. I. Average correlation matrix with disattenuated correlations. Across all the images, neither the
fixations, nor the meaning and graspability maps (with and without the center bias) are strongly predictive of spatial memory priors (Chain KDEs).
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Fig. S20. Full serial reproduction results for a shaded pentagon (all chains and all iterations). A. Main results Using the between-subject design. B. Results using the
within-subject design. The bottom right sub-panels show the parametric KDEs, and the next-to-last sub-panels show an overlay of the parametric KDEs over the image.
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Fig. S21. Full serial reproduction results for a natural image (all chains and all iterations). A. Main results Using the between-subject design. B. Results using the within-subject
design. The bottom right sub-panels show the parametric KDEs, and the next-to-last sub-panels show an overlay of the parametric KDEs over the image.
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Fig. S22. Kernel density estimates (KDEs) for triangle and lighthouse image serial reproduction results. KDEs for the initial seed distribution and all 20 iterations of the chains
are shown.
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Fig. S23. All experiments, including the image names and categories, the width and heights of all stimulus images, the total number of participants who participated in each
experiment, and the number of chains where applicable.
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