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Perceptual judgments of the environment emerge from the concerted activity of neural
populations in decision-making areas downstream of the sensory cortex. When the
sensory input is ambiguous, perceptual judgments can be biased by prior expectations
shaped by environmental regularities. These effects are examples of Bayesian inference,
a reasoning method in which prior knowledge is leveraged to optimize uncertain
decisions. However, it is not known how decision-making circuits combine sensory
signals and prior expectations to form a perceptual decision. Here, we study neural
population activity in the prefrontal cortex of macaque monkeys trained to report
perceptual judgments of ambiguous visual stimuli under two different stimulus
distributions. We isolate the component of the neural population response that
represents the formation of the perceptual decision (the decision variable, DV), and
find that its dynamical evolution reflects the integration of sensory signals and prior
expectations. Prior expectations impact the DV’s trajectory both before and during
stimulus presentation such that DV trajectories with a smaller dynamic range result in
more biased and less sensitive perceptual decisions. We show that these results resemble
a specific variant of Bayesian inference known as approximate hierarchical inference.
Our findings expand our understanding of the mechanisms by which prefrontal circuits
can execute Bayesian inference.

perceptual decision-making | prefrontal cortex | Bayesian inference

Perceptual systems infer properties of the environment from sensory measurements
that can be ambiguous. However, prior knowledge can be leveraged to disambiguate
the interpretation (1, 2). This inference strategy typically manifests as perceptual
interpretations that are biased toward the prior expectation. Such biases may reflect
implicit knowledge of statistical regularities that are stable features of the environment
(3–6), such as the tendencies of sunlight to come from above (4), image velocities to be
slow (5, 6), and cardinal orientations to be overrepresented in visual scenes (7). However,
biased perceptual interpretations can also reflect knowledge of statistical regularities that
are context-specific and short-lived in nature (8–12). The diversity of experimental
settings under which prior-induced perceptual biases occur suggests that a general neural
mechanism may underlie these effects (13–15).

Prior expectations about sensory stimulation are known to modulate neural activity
in decision circuits in various ways. Context cues that signal specific environmental
statistics can selectively modulate activity of single cells before stimulus onset (16),
during stimulus presentation (17–20), and while the perceptually driven behavior is
being produced (19, 20). At the population level, these effects conspire to bias neural
representations toward the prior expectation (20). Because these neural effects co-occur
with biases in perceptual reports, they are thought to reflect the neural computations that
govern the perceptual interpretation of the environment (16, 18–20). However, there
is an alternative explanation that cannot be ruled out. In all of these previous studies,
perceptual interpretations had a fixed relationship to the overt motor response. Thus,
the biases in perceptual reports coincided with the biases in motor responses. Given that
decision-making circuits are typically involved in action planning (21–23), it is unclear
whether the reported neural correlates of perceptual expectation pertain to perceptual
inference, motor planning, or a mixture of the two.

To obtain an unobstructed view on the neural correlates of perceptual expectation
and inference, we used a task that requires flexible reporting of perceptual decisions (23).
Monkeys judged whether a visual stimulus was oriented clockwise or counterclockwise
from vertical and communicated their decision with a saccadic eye movement toward
one of two visual targets (Fig. 1A). The meaning of each response option was signaled by
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the target’s orientation (clockwise vs. counterclockwise) and was
unrelated to its spatial position (one target was placed in the
neurons’ estimated motor response field, and the other was placed
on the opposite side of the fixation mark; see Materials and
Methods). Because the spatial configuration of the choice targets
varied randomly from trial to trial, changes in prior stimulus
statistics biased the animals’ perceptual reports, but not their
overt motor responses. While the animals performed this task,
we recorded extracellular responses from neural ensembles in the
prearcuate gyrus (SI Appendix, Fig. S1), an area of the prefrontal
cortex (PFC) involved in the selection of saccadic eye movements
(24, 25) that represents visuomotor deliberation (26, 27). We
previously found that the population activity initially represents
the formation of a perceptual choice, before transitioning into the
representation of the motor plan (23). Here, we study how prior
expectations and sensory signals shape the perceptual decision-
making process at the single-trial level. Our results reveal that
prior expectations selectively change the dynamic evolution of
the decision-related component of population activity in PFC.
Expectations impact the starting point, slope, and dynamic range
of the stimulus-driven trajectory in neural activity. Our analysis
shows that these effects are consistent with a variant of Bayesian
inference known as approximate hierarchical inference, and
culminate in more biased and less sensitive perceptual decisions.

Results

Task and Behavior. Two rhesus macaques were trained to
perform a visual orientation discrimination task in which
they communicated perceptual decisions under two different
stimulus–response mapping rules (Fig. 1A). The data were
previously described in detail in ref. 23. Task difficulty was
controlled by manipulating stimulus orientation and contrast
(Fig. 1B). Monkeys received a reward if they selected the
appropriately oriented choice target. They performed the task
similarly well under both mapping rules (median performance:
monkey F = 79.7% correct; monkey J = 79.6% correct;
median difference in performance across mapping rules: monkey
F = 2.58%, P = 0.002; monkey J = 0.5%, P = 0.57;
Wilcoxon signed-rank test). We manipulated the animals’ prior
expectations by sampling stimulus orientation from one of two
skewed distributions (Fig. 1C ). On each trial, the shape of the
fixation mark signaled the current prior condition. The prior
condition and stimulus contrast were switched across short blocks
of trials (Materials and Methods). The prior manipulation selec-
tively biased the animals’ perceptual judgments of ambiguous
stimuli (median difference in choice bias for vertical gratings:
monkey F = 1.22 log odds, P < 0.001; monkey J = 1.49
log odds, P < 0.001), but not the motor responses used to
communicate these decisions (median difference in motor bias:
monkey F = 0.03 log odds, P = 0.31; monkey J = 0.03 log
odds, P = 0.06; Fig. 1D). Together, these results suggest that
our paradigm engages brain mechanisms that specifically bias
perceptual judgments of ambiguous sensory inputs.

What is the nature of the inference process that underlies
these biased judgments of visual stimuli? A prominent hypothesis
is that these biases naturally arise under an inference strategy
that seeks to make the best possible decision given ambiguous
sensory measurements and prior experience (1, 2). This notion
is formalized in the framework of Bayesian inference. An ideal
Bayesian decision-maker computes the posterior evidence in sup-
port of each response option by multiplying the prior probability
of each stimulus orientation with the likelihood that a specific

stimulus orientation gave rise to the current sensory measurement
(Fig. 1 E, Top). As a consequence, perceptual decisions are biased
for all stimulus orientations, manifesting as a horizontal shift
of the psychometric function (Fig. 1 E, Bottom, gray vs. orange
line). The impact of the prior on the decision depends on the
ambiguity of the sensory response. The more ambiguous the
sensory response, the broader the likelihood function, and the
larger the impact of the prior on the posterior (Fig. 1 E, Bottom
Left vs. Right panel). A Bayesian inference strategy maximizes
choice accuracy, even though it results in decision biases and
systematic errors (Fig. 1F, gray vs. orange lines). Does this strategy
explain why the monkeys’ judgments of ambiguous stimuli were
biased? In keeping with this hypothesis, the monkeys’ decisions
were biased for all stimulus orientations, not just vertical gratings
(Fig. 1G, red vs. blue symbols). Moreover, they tended to make
more biased decisions in task conditions associated with higher
sensory uncertainty. We estimated decision bias by measuring
the separation between the prior-conditioned psychometric
functions, and sensory uncertainty by calculating the slope of
the psychometric function (Materials and Methods; Fig. 1G).
For both monkeys, decision bias and sensory uncertainty were
significantly correlated (Spearman rank correlation: Monkey
J = −0.42, P = 0.017; Monkey F = −0.60, P = 0.0015;
Fig. 1H ), though note that this effect is largely driven by stimulus
contrast (High contrast only: Monkey J = −0.07, P = 0.8;
Monkey F = −0.45, P = 0.13; Low contrast only: Monkey
J = 0.12, P = 0.66; Monkey F = −0.64, P = 0.022). This
data pattern suggests that the animals used a perceptual decision-
making strategy that resembles Bayesian inference.

Linking PFC Population Activity to Perceptual Inference at the
Single Trial Level. The animals’ choice behavior was variable.
For most experimental conditions, the overall proportion of
clockwise choices was neither zero nor one (Fig. 1G). This choice
variability may either arise from cross-trial variability in sensory
measurements (28–31) or from fluctuations in prior expectations
(11). Given that choice variability was minimal or absent for the
most extreme stimulus orientations (Fig. 1G), less likely sources
are noise in the choice–response mapping process or attentional
“lapses.” Because the choice variability has no obvious external
origin, identifying the neural factors that determine the outcome
of individual decisions ultimately requires a moment-to-moment
analysis of neural population activity within single trials (32, 33).

We obtained a trial-by-trial measurement of the animals’
evolving decision state by decoding a time-varying decision
variable (DV) from jointly recorded neural responses using
linear discriminant analysis (Materials and Methods). The DV
indicates how well the subject’s upcoming perceptual choice can
be predicted from a 50 ms bin of neural population activity.
In previous work, we showed that trial-averaged DV trajectories
exhibit key signatures of a decision-making process (23). Most
importantly, grouping trials by stimulus strength and choice
accuracy revealed a graded representation of sensory evidence
(the more the stimulus orientation deviates from vertical, the
higher the sensory evidence). In contrast, the action-planning
component of neural activity did not show these effects. We
concluded that the decision-making process was implemented
as a competition between possible perceptual interpretations,
independent of the ensuing action. Here, we build on these
findings to develop an analysis that aims to uncover how decision-
making circuits integrate perceptual expectations and sensory
signals.
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Fig. 1. Flexible orientation discrimination under different prior statistics: task and behavior. (A) Orientation discrimination task, task sequence. Each trial begins
when the observer initiates fixation. The shape of the fixation mark indicates the prior distribution from which the stimulus will be drawn. After the observer
fixates for 500 ms, two choice targets appear, followed by the stimulus. The observer judges whether the stimulus is rotated clockwise or counterclockwise
relative to vertical and communicates this decision with a saccade toward the matching choice target. Correct decisions are followed by a juice reward. One
of the choice targets is placed in the neurons’ presumed motor response field (Materials and Methods). The spatial organization of the choice targets varies
randomly from trial-to-trial, giving rise to two stimulus–response mapping rules. (B) Stimuli varied in orientation and contrast. (C) Stimuli were drawn from one
of two orientation distributions. (D) Comparison of choice and motor bias for the randomly rewarded ambiguous stimuli (orientation = 0 deg) under both priors
for both monkeys (Materials and Methods). (E) An ideal Bayesian decision-maker evaluates the likelihood of every possible state of the sensory environment and
multiplies this distribution with the prior probability of encountering each state to obtain a posterior belief function. The posterior informs the decision. More
ambiguous sensory measurements yield a broader likelihood function, and ultimately more biased decisions. (F ) Choice accuracy (Top) and bias (Bottom) in our
task under a maximum likelihood (ML) and maximum posterior probability (MAP) inference strategy (Materials andMethods). The performance benefit conferred
by accurate prior knowledge grows with sensory uncertainty (Top), as does the magnitude of the decision bias (Bottom). (G) Psychophysical performance for
monkey J in an example recording session. Proportion “clockwise” choices for low contrast stimuli are shown as a function of stimulus orientation under both
priors. Symbol size reflects number of trials (total: 1,875 trials). The curves are fits of a behavioral model (Materials and Methods). (H) Decision bias plotted as a
function of orientation sensitivity for both monkeys (Left: Monkey J, Right: Monkey F ). Each symbol summarizes data from a single recording session. Closed
symbols: high contrast stimuli, open symbols: low contrast stimuli. Error bars reflect the IQR of the estimate. (A, G, and H): Adapted from ref. 23, which is
licensed under CC BY 4.0.

Consider the DV trajectories of two example trials, measured
from the same set of neurons in the same experimental condition
(Fig. 2A, symbols). Both trials yielded identical overt choice
behavior (a clockwise choice indicated with a rightward saccade).
The raw DV trajectories are noisy, but share some clear
commonalities. On both trials, the DV value hovers around zero
before stimulus onset. Following stimulus onset, the DV ramps
up to a peak value, after which it decays steadily. We speculate
that the peak occurs around the time of choice commitment,
after which the animal starts to prepare the corresponding motor
response (23). Closer inspection of the trajectories reveals that
the build-up toward the peak differs in a number of ways. The
excursions seem to start from a different baseline level, and the
ramping phase appears to differ in slope and amplitude. We
hypothesize that these features capture an important aspect of the
temporal evolution of the animal’s decision state. We therefore
sought to obtain quantitative estimates of these trajectory features
for each trial.

We estimated key features of the DV trajectories by fitting
a model in which trajectories evolve smoothly to the raw DV
values (Fig. 2A, lines; see Materials and Methods). This way,
we obtained a single “model DV-trajectory” for each trial.
Due to the irregular nature of the raw DV trajectories, the
correlation between model DV-trajectory and raw DV value
was modest (median Pearson correlation: Monkey J = 0.63;
Monkey F = 0.58; Fig. 2B). Nevertheless, the model captured

the systematic structure of the trial-averaged data well. This was
evident at the level of individual recording sessions (example
shown in Fig. 2C ). To test whether the model DV-trajectories
afford additional insight into the animals’ decision state, we
conducted a logistic regression analysis of the choice behavior.
For each recording session, we first measured the association
between the experimentally controlled variables (stimulus prior,
orientation, and contrast) and choice outcome (i.e., correct or
incorrect). We then asked whether including the peak value of the
model DV-trajectory as an additional regressor helped to better
predict choice outcome (Materials and Methods). We computed
a standard measure for prediction error (Akaike’s Information
Criterion, AIC) and found that including the peak value of
the model DV-trajectories systematically improved prediction
quality (manifesting as a difference in AIC that is larger than 0
in Fig. 2D).

We have argued that the monkeys’ behavior suggests that they
combined prior expectations and sensory inputs in a manner that
resembles Bayesian inference. We therefore hypothesized that
the peak value of the neurally decoded DV should exhibit key
signatures of a Bayesian posterior. To test this, we investigated
how the model DV-trajectories’ peak value depended on the
stimulus prior, orientation, and contrast. In the vast majority of
recording sessions, the peak DV value exhibited the hypothesized
structure, as can be seen for an example session (Fig. 2E ; more
examples shown in SI Appendix, Fig. S2). Specifically, the peak
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Fig. 2. Extracting neural correlates of Bayesian-like perceptual inference at the single trial level from PFC population activity. (A) Temporal evolution of the
categorical DV on two different trials from the same recording session with identical experimental parameters and choice behavior (prior = clockwise skew,
stimulus orientation = 2.2 deg, stimulus contrast = high, mapping rule = 1, and choice = “clockwise”). Symbols show the raw DV estimates, lines the fit of
a model. The average time of stimulus onset is indicated by the black arrow. (B) Distribution of the correlation between model DV-trajectories and raw DV
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session. (D) Difference in prediction error for two logistic regression analyses of the choice behavior, as measured by Akaike’s Information Criterion. The first
analysis used stimulus prior, orientation, and contrast as regressors, the second analysis additionally used the model DV-trajectory peak value. Positive values
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DV grows with stimulus orientation but is biased by the stimulus
prior. The impact of the sensory input is greater when stimulus
contrast is high, as is evident from the difference in the slope of
a linear regression line (Fig. 2 E, Left vs. Right panel, slope =
0.18 for low contrast stimuli and 0.31 for high contrast stimuli).
Conversely, the impact of the prior expectation is greater when
stimulus contrast is low, as is evident from the difference in the
offset of the regression lines (Fig. 2E, Left vs.Right panel, offset =
0.86 for low contrast stimuli and 0.35 for high contrast stimuli).
These effects are representative of both animals’ data (median
difference in slope between low- and high-contrast stimuli:
monkey J = 0.02, P = 0.003; monkey F = 0.01, P = 0.007;
one-sided Wilcoxon signed-rank test; Fig. 2F ; median difference
in offset: monkey J = −0.28, P = 0.007; monkey F = −0.04,
P = 0.05; Fig. 2G). Thus, around the putative time of choice
commitment, the neurally estimated decision state exhibits key
signatures of a Bayesian posterior. Having established this, we
now turn to the question of how prior expectations impact the
evolving decision state over the course of a single trial.

Prior Expectations Bias Neural Population Trajectories. The
effects of prior expectation on the evolving decision state can
be appreciated by considering neural responses to low contrast
stimuli whose orientation matches the categorization boundary
(vertical gratings). These stimuli yield sensory responses that are,
on average, completely ambiguous. It follows that any systematic
choice biases, summarized in Fig. 1D, are purely driven by the
subject’s prior belief. As can be seen in an example recording
session, the neural DV reflects this prior belief well before
stimulus onset (Fig. 3A). At this point in time, the animal can only
leverage knowledge about the skew of the stimulus distribution
(i.e., whether a clockwise or counterclockwise orientation is more
likely) and the level of sensory uncertainty (i.e., whether a low

or high contrast stimulus is more likely). For both animals,
this contextual information biases the DV’s early value in the
direction of the prior expectation. This effect was prominent
for Monkey J , but subtle for Monkey F , as is evident from
the DV traces averaged across all sessions (Fig. 3B) and from
the model DV-trajectory value before stimulus onset (difference
in median value for the −800 to −600 ms epoch: monkey
J = 0.1354, P < 0.001; two-sided Wilcoxon rank sum test;
monkey F = 0.0111, P < 0.05; Fig. 3C ). As can also be
seen from the average DV traces, the prior-induced bias is not
static, but grows over time. To quantify this, we used the model
DV-trajectories to compute the average DV value per recording
session for an early and late temporal window (spanning the
range from −800 to −600 ms and −500 to −300 ms). The
first window precedes any stimulus-driven activity in PFC,
while the second one overlaps with the putative time of choice
commitment. Plotting the late against the early DV value reveals
a relationship that is steeper than the line of unity (Fig. 3D).
For both monkeys, the gradient of the first principal component
was approximately 72.5 deg, significantly steeper than 45 deg
(monkey J : 72.0 deg,P < 0.001, bootstrap analysis; seeMaterials
and Methods; monkey F : 72.7 deg, P < 0.001).

Why does the influence of the prior expectation grow during
deliberation? We hypothesize that both animals integrated
incoming sensory evidence over time and gave more weight
to noisy orientation estimates that agreed with their prior
expectation. Such a confirmation bias deviates from an ideal
inference strategy, in which all sensory evidence is given the same
weight, resulting in a flat average DV trace for ambiguous stimuli.
However, a confirmation bias naturally arises when subjects
use an inference strategy that approximates the posterior rather
than computing it exactly (34). Under approximate inference, as
incoming sensory evidence is accumulated to update the posterior
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Fig. 3. Prior expectations bias the decision variable before and during stimulus presentation. (A) Trial-averaged temporal evolution of the categorical DV,
split by stimulus prior, for a single recording session. Only low contrast, zero signal stimuli are included. Symbols show the raw DV estimates, lines the model
DV-trajectories. The average time of stimulus onset is indicated by the black arrow. (B) The average across all recording sessions, split by monkey (Left vs. Right
panel). (C) Distribution of the model-estimated early DV value across all recording sessions, split by stimulus prior (blue vs. red) and monkey (Left vs. Right). (D)
Late DV value plotted against early DV value, split by monkey (Left vs. Right). Each symbol summarizes the trial-averaged values of a single recording session (one
point per stimulus prior). (E) We simulated bounded accumulation of ambiguous sensory evidence under two different prior expectations. In all simulations,
the prior changes the starting point of the accumulation process (blue vs. red trace, leftmost time point). In some simulations, the prior additionally changes
the drift rate of the accumulation process (blue vs. red arrow). (F ) Late DV value plotted against early DV value for the simulations without (Left) and with (Right)
prior-induced drift.

belief in the state of the world, the prior belief enters into the
update multiple times, resulting in a positive feedback loop (34).
Critically, this explanation implies that a decision-making model
composed of an initial prior-induced offset and a bound that
terminates the deliberation process does not suffice to capture
the dynamically increasing influence of the prior on the DV.
The extra ingredient that is needed is a prior-induced drift (34).
To test this explanation of our data, we simulated bounded
accumulation of ambiguous sensory evidence and compared
early and late DV values (Materials and Methods; Fig. 3E). We
varied the strength of the prior-induced effects and the height
of the bound, resulting in a range of DV values (Fig. 3F ). In
the simulations that only included an early offset and lacked
a prior-induced drift, early and late DV values were equal on
average (Fig. 3 F, Left). We found that inclusion of a prior-
induced drift was necessary to produce late DV values that were

greater than the early DV values, as seen in the physiological
data (Fig. 3 F, Right). Together, these results suggest that the
subjects interpreted neutral sensory evidence in a biased fashion,
thus further entrenching their prior expectations.

Relating the Dynamic Range of Neural Trajectories to Decision
Bias and Sensory Uncertainty. Our analysis so far suggests that
the decision-related component of neural population activity
in PFC resembles a bounded accumulation process in which
prior expectations influence the DV both before and during
accumulation of sensory evidence. This hypothesis is in part
motivated by the neural DV’s temporal evolution during pre-
sentation of ambiguous sensory stimuli (Fig. 3). To test its
explanatory power, we first asked whether such a process can
capture the behavioral effects of prior expectation for ambiguous
as well as nonambiguous stimuli. To this end, we extended
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the drift-diffusion model simulation to nonambiguous stimulus
conditions (Materials and Methods; SI Appendix, Fig. S3A). In
our simulation, stimulus orientation determines the mean of
the momentary sensory evidence distribution, while stimulus
contrast governs its spread. We further assumed that prior
expectations influence the DV’s initial value and its stimulus-
dependent drift in exactly the same manner across all stimulus
conditions. A decision is reached when a bound is crossed, or
when time is up. In the latter case, the sign of the DV at
the time of choice commitment determines choice outcome.
Consider one specific instantiation of this process (Fig. 4A).
As can be seen, prior expectations produce a horizontal shift
of the psychometric functions, just like we observed in the
animals’ behavior (compare with Fig. 1G). Moreover, lowering
stimulus contrast makes the psychometric function more shallow
and increases the decision bias (Fig. 4A, light vs. dark lines),
again recapitulating the animals’ behavior. Varying the model
parameters can change the magnitude of the decision bias and
the steepness of the psychometric functions, but it does not alter
this basic pattern (SI Appendix, Fig. S3B).

The proposed decision-making process gives rise to a rela-
tionship between the dynamic range of the DV trajectory and
decision bias. Specifically, simulated trials in which the eventual
choice aligns with the prior expectation tend to have a smaller
dynamic range (defined as the difference between the simulated
DV’s peak value and its initial value), while trials in which the
choice deviates from the prior expectation tend to have a larger
dynamic range (Fig. 4B). This relationship arises naturally if a
prior expectation influences the DV’s initial value while a fixed
boundary terminates the deliberation process (or conversely, if
a prior expectation influences the bounds without impacting
the initial value). To examine the relationship between dynamic

range and decision bias, we computed the distribution of the DV’s
dynamic range across all trials within a simulated experiment
and separately analyzed the choice behavior for the trials whose
dynamic range was below and above the median (Fig. 4C ).
We observed that the effect of the prior differs substantially
across the low- and high-dynamic range trials in the simulated
dataset. Specifically, when the DV’s dynamic range is low, the
decision bias is amplified, and the psychometric function is more
shallow (Fig. 4C, light vs. dark lines). This pattern of results is
specific to a decision-making process in which the prior changes
the distance between the DV’s starting point and the bounds.
Alternative scenarios in which the prior only induces a drift
during the accumulation of sensory evidence, or in which there is
no terminating boundary, do not produce a relationship between
dynamic range and decision bias (SI Appendix, Fig. S4).

To test whether these simulated effects are present in the real
data, we conducted the same median-split analysis on the neural
DVs, using the model DV-trajectories to estimate each trial’s
dynamic range (Materials and Methods). We identified the same
relationship between dynamic range and the animals’ decision
bias. To quantify this relationship, we computed the difference
between the decision bias for low- and high-dynamic range trials,
ΔB = Δ�L − Δ�H (example shown in Fig. 4D). Across all
experiments, the mean value of ΔB was 0.45 (P < 0.001,
Wilcoxon signed rank test; Fig. 4 E, Left). Considering the data at
a more granular level (per monkey and per contrast level) reveals
the robustness of these results, though not every individual case
reached statistical significance (Fig. 4 E, Left). We also measured
the relationship between dynamic range and the steepness of
the psychometric function, quantified as ΔS = Δ�L − Δ�H ,
and again found a pattern of results consistent with the model
simulation. Lower dynamic range trials tended to be associated
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with a shallower psychometric function (mean value of ΔS was
0.09, P < 0.01; Fig. 4 E, Right). For some sessions, these effects
were substantial; for others, they were small. Having established
earlier that the peak DV values exhibit key signatures of a
Bayesian posterior, we asked whether the variability in effect
size over sessions might be predicted by how strongly the peak
DV values correlated with the animal’s behavior. Interestingly,
the effects tended to be larger for datasets where the model
DV-trajectories’ peak values better predicted the animal’s choice
behavior (Fig. 4F ). To summarize these results, we computed
the correlation between ΔB and ΔS on the one hand, and the
previously introduced measure for model prediction error (AIC)
on the other. Across all experiments, the correlation with ΔB
was 0.62 (P < 0.001; Fig. 4 G, Left panel), while the correlation
with ΔS was 0.54 (P < 0.001; Fig. 4 G, Right panel). Thus, the
stronger the neural correlate of the decision-making process, the
more the empirical data resemble the predictions of an idealized
model of how prior expectations shape this process.

We hypothesize that the neural DV’s dynamic range primarily
reflects the strength of the prior expectation. Under a bounded
accumulation process with a prior-induced initial offset and drift,
a prior expectation reduces the dynamic range of congruent
choices, but has the opposite effect on incongruent choices. In
this manner, a prior expectation simultaneously amplifies the
decision bias and shallows the psychometric function. Varying
the strength of the prior expectation under our imagined scenario
impacts both summary statistics of the observable behavior, as is
evident from simulations of this process (Fig. 5A). We found that
this co-occurrence was also present in our empirical observations
(Fig. 5B). Sessions that exhibited a stronger association between
dynamic range and decision bias difference (as measured by
ΔB) also exhibited a stronger association between dynamic range
and slope difference of the psychometric functions (correlation
betweenΔB andΔS: 0.63,P < 0.001; Fig. 5C ). This relationship
remained significant after controlling for the contribution of
model prediction error (AIC), a confounding variable that
could have inflated this relationship (F = 10.18, P = 0.0025;
ANCOVA with 4 levels of prediction error). Together, these
results support the conclusion that shorter excursions of the
neural DV yield more biased, less sensitive perceptual decisions.

Discussion

In this study, we investigated neural population activity in
the prefrontal cortex of macaque monkeys while they judged
ambiguous visual stimuli under different prior stimulus statistics.
We sought to understand how decision-making circuits combine

sensory signals and prior knowledge to form a perceptual decision.
We used a task that requires flexible reporting of perceptual
decisions and found that prior expectations exert numerous in-
fluences on neural population activity during decision formation.
In our task, the neural correlate of decision formation resembles
a tug-of-war style competition between candidate perceptual
interpretations, independent of the ensuing motor response
used to communicate the decision (23). Prior expectations
shift the starting point of the competition toward the more
probable stimulus interpretation (Fig. 3 A–C ). Additionally,
prior expectations selectively change the impact of each piece of
sensory evidence on the competition, favoring the evidence that
is congruent with the expectation (Fig. 3 D–F ). Finally, prior
expectations shorten the distance between the starting point and
end point of the decision formation trajectory (Fig. 4).

Several previous studies also used biased perceptually driven
behavior as a gateway to study the neural implementation of
Bayesian computation in decision-making areas (16–20, 35).
These studies revealed that expectations can modulate the activity
of single neurons before stimulus onset (16, 17), while the
stimulus is presented (16, 18–20), and while the behavior is
produced (19, 20). However, due to the experimental design, it
is impossible to say whether these effects reflect a neural correlate
of perceptual inference or of motor planning. Here, we built on
this work by using a task in which the perceptual and motor
components of the decision process are orthogonalized (Fig. 1A).
This enabled us to isolate the component of neural activity that
solely pertains to the formation of a perceptual choice. Our
analysis revealed population level effects that echo elements of
the aforementioned findings but that are clearly situated in the
domain of perceptual inference. Specifically, we showed that
neurons in the prearcuate gyrus can collectively represent abstract
perceptual expectations before stimulus onset and confirmation
biases during the evaluation of sensory evidence. These results
suggest that neural mechanisms that perhaps originally evolved to
select the best candidate action (36) over time acquired sufficient
flexibility such that they can be repurposed to select the best
candidate interpretation of the state of the environment in light
of incoming sensory signals and prior experience.

Similarities across studies that investigate different brain areas
in different perceptual tasks are helpful to identify key properties
of a general neural mechanism. We wish to highlight three
striking similarities. First, Hanks et al. conducted single-cell
recordings in the lateral intraparietal cortex (LIP) during a
nonorthogonalized visual motion discrimination task (18). They
found that prior expectations bias responses of LIP neurons in
a time-dependent manner, similar to the time-dependent effects
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we observed for a population-level signal in PFC (Fig. 3 A–D).
Second, Sohn et al. studied neural population activity in the
dorsomedial frontal cortex during a time-interval reproduction
task (20). They found that the neural implementation of Bayesian
computation was evident in the dynamic evolution of population
activity, which is also a key finding of this study (Fig. 4). Finally,
Serrano-Fernandez et al. investigated neural population activity
in PFC during a vibrotactile frequency-discrimination task. They
found that the state-space trajectories encoded a warped represen-
tation of the stimulus, in line with the predictions of a Bayesian
estimator (12), just as we observed for a visual orientation
discrimination task (Fig. 3E). Together, these similarities suggest
that biases in perceptual judgments arise from dynamically
distorted population representations in decision-making areas
downstream of the sensory cortex. However, by themselves, these
similarities do not reveal which area plays which role in Bayesian
inference processes. An important goal for future work is to
directly compare multiarea recordings to elucidate this issue.

We extracted the DV from neural population recordings by
creating two groups of trials based on the animals’ categorical
decisions and applying Linear Discriminant Analysis. Given this,
is it not guaranteed that neural DVs will reveal a bounded
accumulation process? It is not. First, it is not guaranteed in
advance that neural correlates of a decision reflect a decision
formation process. For example, decision-related activity in the
early visual cortex is thought to arise at least in part after the
decision-making process is completed (37–39). Second, it is
not obvious in advance that the brain relies on a bounded
evidence accumulation computation to perform a fine orientation
discrimination task. Two reasonable alternatives are a snapshot
decision process (stimulus orientation is a static aspect of the
environment in our task, so this would represent an economic
strategy that saves spikes), or unbounded integration of noisy
sensory responses (this strategy would be costly in terms of spikes,
but it would harvest more information contained in the sensory
inputs). However, we can reject these alternatives since they
predict no relation between the DV’s dynamic range and the
strength of the bias, and thus are incommensurate with our data
(Fig. 4). In sum, detailing the dynamic trajectories of candidate
causal neural correlates of a decision and studying their relation
with the choice behavior is necessary to discover which neural
circuits make decisions and how they do so.

Our work is not without limitations. First, while we found
our binary decision-making task effective in exposing key
characteristics of neural computations, it is not rich enough to
distinguish between inference schemes that involve full probabil-
ity distributions (Fig. 1E) and simpler heuristic approximations
that involve point estimates. Second, the prior condition and
stimulus contrast were held constant for short blocks of trials.
Doubtlessly, the monkeys figured out this temporal structure
of the task. It is therefore possible that the animals’ attention
level varied across these blocks—perhaps they preferred one type
of block over others. If this were the case, it could result in
neural effects beyond the influences of expectation and sensory
evidence. We cannot exclude the presence of such effects in our
data. Finally, our populations consisted of 5 to 35 units—a very
small number compared to the number of neurons involved in
the computations under consideration. As is evident from recent
work, recording from substantially larger populations can provide
deep insight into the neural basis of individual decisions (40), and
reveal functionally distinct subpopulations (41).

Figurative language used to describe biased reasoning often
invokes inertia. A biased person can be said to be entrenched in
a position, immovable by evidence. In the prefrontal cortex, we

found a literal manifestation of the figurative relation between
bias and inertia. When the neurally decoded decision variable
covered less distance, monkeys gave a more biased account of the
state of the sensory environment. This finding establishes a direct
link between Bayesian computation and the dynamic evolution
of neural activity during decision-formation (also see refs. 12
and 20). We suggest that this link exists because the brain’s
implementation of Bayesian computation in our task resembles
an approximate hierarchical inference process in which evidence
is integrated until a bound is reached. It may seem surprising
that estimating a static aspect of the environment involves
temporal integration. However, noise in neural representations
limits the signal-to-noise ratio of momentary sensory messages
communicated by the sensory cortex (29, 42, 43), and thus the
quality of perceptual estimates informed by these messages (44).
Temporal integration averages out some of this noise, thereby
improving the quality of perceptual estimates (43, 45–48).
Under an approximate hierarchical inference process, prior
expectations change the initial starting point and drift of the
accumulator (34). Using model simulations, we found that this
process explains several key features of our data. First, it results in
decisions that are biased for ambiguous as well as nonambiguous
stimulus orientations. Second, lowering stimulus contrast jointly
reduces the slope of the psychometric function and increases the
decision bias. Third, under this process, shorter excursions of
the decision variable are associated with more biased and less
sensitive decisions. We speculate that the neural implementation
of Bayesian computation we have revealed is sufficiently general
to support a wide range of perceptual and cognitive estimation
tasks.

In this work, we provided a detailed description of the
temporal evolution of population activity in the prefrontal
cortex during perceptual inference and we identified a principled
computational process that accounts for these observations. It is
natural to ask how neural circuits realize this computational logic.
Specifically, how can hardwired circuits provided with a response
mapping cue, a stimulus prior cue, and a snippet of noisy sensory
measurements realize approximate hierarchical inference in a
representational space that is orthogonal to the action selection
space? We speculate that a recurrent neural network organized as
an attractor network may be a fruitful starting place to address
this question (49–52). Our analysis has provided a rich set of
empirical constraints that should prove helpful to distinguish
among candidate network organizations and training regimes
and thus represents an important step toward uncovering the
neurobiological basis of perception and cognition.

Materials and Methods

All analysis and simulation code for this work are included in a public GitHub
repository associated with this manuscript.*

Experimental Methods and Behavioral Analysis. Experimental methods
were previously described in ref. 23. In brief, the experiments were conducted
on two adult male macaque monkeys (Macaca mulatta, ages 8 to 9 y old over
the course of the experiments). The animals were trained to perform a memory-
guided saccade task and an orientation-discrimination task. All training, surgery,
and recording procedures conformed to the National Institute of Health Guide
for the Care and Use of Laboratory Animals and were approved by The University
of Texas at Austin Institutional Animal Care and Use Committee. In order to
identify recording sites where neurons exhibited neural activity that selectively

*Project GitHub Repository link: https://github.com/andrefrancois22/Bayesian_Inference_
PAG.
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preceded an upcoming eye movement, we used a variant of the classic memory-
guided saccade task (23, 53). Once we identified a recording site with a
well-defined motor response field (see SI Appendix, Fig. S1 for locations of
prearcuate gyrus recordings for both animals), we conducted several additional
orientation discrimination training sessions with one choice target placed within
the estimated response field location and one on the opposite side of the
fixation mark. We used exactly the same task for these training sessions as for
the subsequent recording sessions. Once psychophysical performance reached
a high level, we proceeded with physiological data collection. The orientation-
discrimination task involved two distinct prior contexts, each associated with
differently skewed distributions from which stimulus orientations were drawn
(see Fig. 1C for the two prior context distributions). Blocks of both prior contexts
alternated randomly (with 80 trials per block). Stimuli were drawn from a
set of seven possible drifting gratings with orientations evenly spaced over a
narrow range of orientations, which was calibrated to each monkey’s orientation
sensitivity (for monkey F, the seven stimulus orientations ranged from−3.75
deg to 3.75 deg, and for monkey J, the stimulus orientations ranged from
−3.3 deg to 3.3 deg). Stimuli were presented at either a high or a low contrast
(Michelson contrast: 100% or 4%). Blocks of high and low contrast stimuli
alternated randomly (trials per block: monkey F = 100, monkey J = 80).
Correct choices were followed by a liquid reward. Incorrect choices were followed
by an error sound. Vertically oriented stimuli received random feedback. Finally,
the reward size was constant across trials and recording sessions for each monkey.
We measured observers’ choice bias for ambiguous stimuli by computing
the log odds of “clockwise” choice under each prior context (Fig. 1D). We
measured the ability of the animals to discriminate stimulus orientation by
fitting the relationship between stimulus orientation and the probability of
a “clockwise” choice with a psychometric function composed of a lapse rate
and a cumulative Gaussian function. Model parameters were optimized by
maximizing the likelihood of the model over the observed data, assuming
responses arise from a Bernoulli process. Each recording session was analyzed
independently. To quantify the decision bias of the animals across all stimulus
orientations, we fit one psychometric function per stimulus prior and contrast
level (assuming that the slope of the psychometric function was the same
across both prior conditions; see Fig. 1H). We computed the decision bias by
taking the difference between the means of both cumulative Gaussians (i.e., the
magnitude of the horizontal displacement of both psychometric functions). Error
bars of model-based statistics are based on a 100-fold nonparametric bootstrap
of the behavioral choice data.

Simulated Observer Models. We investigated the choice behavior under an
ideal Bayesian and a Maximum Likelihood inference strategy (Fig. 1 E and F).
We used two context-specific stimulus distributions that matched those used
in the animal experiments. For each trial, the model observers were presented
with a noisy sensory measurement, with the noise modeled as a sample from
a zero mean Gaussian distribution. This sensory measurement informed the
likelihood function, computed as a Gaussian probability density evaluated at all
possible stimulus values, using a SD that matched the strength of the sensory
noise. For the Maximum Likelihood inference strategy, we selected the mode
of the likelihood function as the stimulus estimate. For the Ideal Bayesian
inference strategy, we first used Bayes’ rule to compute the posterior probability
over all possible stimulus values. The perceptual decision reflected whether a
clockwise stimulus orientation was the most likely interpretation (meaning that
the cumulative conditional posterior probability exceeded 50%).

Electrophysiological Recordings. As previously reported in ref. 23, we
performed 13 successful recordings from monkey F and 16 from monkey J
(the average number of trials per session was 3,171 for monkey J, and 1,593
for monkey F). For each subject, we used a chronically implanted recording
chamber to measure extracellular spiking activity from populations of PFC
neurons. We used a microdrive (Thomas recording) to mechanically advance a
linear electrode array (Plexon S-probe; 32 contacts) into the brain at an angle
approximately perpendicular to the cortical surface at the beginning of each
recording session (SI Appendix, Fig. S1). We targeted recording sites that had
well-defined motor response fields in a memory-guided saccade task the animals
had previously performed in the days leading up to the recordings in the main

task. We positioned the linear arrays so that they approximately spanned the
cortical sheet and retracted them after each recording session. Continuous neural
data from each channel were acquired and saved at a sampling rate of 30 kHz
(Plexon Omniplex System). In order to isolate the responses of individual units,
we performed offline spike sorting. First, we spike-sorted the data automatically
with Kilosort (54). This was followed by a manual merging and splitting as
needed. Because the electrode’s position could not be optimized for all contact
sites, most of our units likely consist of multineuron clusters (we estimate that
the fraction of well-isolated single cells is at most 25%). For all analyses reported
here, we included all units whose mean firing rate during the task exceeded 3 ips.

Decision Variable Analysis. All decoding analyses were performed on
simultaneously recorded, single session data. For each trial, we obtained
moment-to-moment measurements of the decision variable by projecting 50 ms
bins of population activity onto a linear decoder optimized to distinguish the
activity patterns associated with both choice options (“left” vs. “right” choices for
the motor DV, and “clockwise” vs. “counterclockwise” choices for the categorical
DV, respectively). Specifically, we first individually z-scored each unit’s spike
counts within every time bin. We then used these z-scored responses to estimate
the set of linear weights, w = (w1, ..., wn), that best separate the choice-
conditioned z-scored response patterns, assuming a multivariate Gaussian
response distribution:

w =
s
Σ
, [1]

where s is the mean difference of the choice-conditioned z-scored responses
and Σ is the covariance matrix of the z-scored responses. The decoder weights
are calculated from observed trials. To avoid double-dipping, we excluded the
trial under consideration from the calculation and solely used all other trials to
estimate the weights. This way, we obtained “cross-validated” DV estimates for
each time bin:

DVj =
∑

wijZij, [2]

where wij and Zij are the weight and z-scored response of unit i on trial j for a
given time bin. The symbols in Fig. 2A show example single trial DV trajectories.
Further information about the decoders can be found in ref. 23, including the
temporal evolution of the categorical and motor projection planes.

For each trial, we fit a model with smoothly evolving DV-trajectories to the raw
DV values (lines in Fig. 2A). This model has five free parameters: One captures
an initial offset in the DV, one specifies the dynamic range of the DV trajectory,
one controls the speed of the rise, one the time point at which half of the rise
is completed, and one captures the decay in strength that follows the peak of
the trajectory. The rising part of the trajectory follows a cumulative Gaussian
profile, while the decay follows an exponential profile that begins at the time
at which the cumulative Gaussian reaches the 99.38th percentile. We fit this
model to the data by minimizing the sum of the squared error of each trial’s
DV trajectory (correlations between model trajectory and raw DV trajectory are
shown in Fig. 2B). We used these model trajectories to estimate, among other
things, the peak DV value for each trial. To evaluate the usefulness of these
estimates, we conducted a logistic regression analysis in which we predicted the
choice behavior using two different sets of regressors. The first set comprised all
experimentally controlled variables (stimulus prior, orientation, and contrast),
the second set additionally included the peak DV value estimate. To compare the
goodness of fit of both sets of regressors, we computed an estimator of prediction
error based on information theory (AIC). Specifically, assuming that the residuals
under each model are distributed according to independent identical normal
distributions:

AIC = 2k + nln(�̂2)− 2C, [3]

where k is the number of free parameters, n the number of data points, C a
constant thatonlydependsonthedata,and �̂2 themaximumlikelihoodestimate
for the variance of a model’s residuals distribution given by the residual sum of
squares divided by the degree of freedom. Because only differences in AIC are
meaningful, the constant C can be ignored when comparing models, yielding a
statistic known as ΔAIC (shown in Fig. 2D).

We examined how the average peak DV value depended on the stimulus
prior, orientation, and contrast (Fig. 2 E–G). For each recording session, we
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quantified the effect of orientation with the slope of a linear regression line. We
allowed these lines to have a prior-specific intercept and conducted this analysis
separately for the high and low contrast trials (example shown in Fig. 2E).

We studied the average temporal evolution of the DV trajectories for the zero-
signal stimulus condition (Fig. 3 A andB). To this end, we plotted the average DV
around the putative time of choice commitment (−500 to−300 ms) computed
from the model trajectory against the average value right before the onset of
stimulus-driven activity (−800 to−600 ms). To quantify the growing influence
of the prior expectation over the course of a trial, we calculated the first principal
component of the resulting scatter plot (Fig. 3D). We evaluated the significance of
the PC’s gradient by conducting a 1,000-fold bootstrap-analysis and computing
the 99.9% CI from the resulting gradient estimate distribution.

Simulated Bounded Accumulation Process. We investigated the dynamic
evolution of the decision variable in a bounded accumulation process and
considered various scenarios. In all cases, the variable that was integrated was
composed of one term representing the momentary sensory evidence, and one
term representing the prior expectation. We modeled the momentary sensory
evidence, s(t), at each time point t as a sample from a Gaussian distribution
s(t) ∼ N (�� , �), with �� proportional to the strength of the evidence
(capturing the effects of stimulus orientation), and� inversely proportional to the
reliability of the evidence (capturing the effects of stimulus contrast). We reserved
positive values to represent evidence for a clockwise stimulus orientation, and
negative values evidence for a counterclockwise orientation. We modeled the
time-varyingpriorexpectationasastepfunction,p(t), thateitheronlyhadenergy
at the first time point (capturing a pure stimulus expectation), or decayed to a
lower but sustained level for the remaining time points (capturing an additional
biased interpretation of sensory evidence). In addition, we introduced trial-by-
trial variability to p(t) by multiplying this term with a scaling factor sampled
from a log-normal distribution with a mean of one. Each trial consisted of
200 time steps, and each simulation consisted of 3,000 trials. We simulate a
decision variable in the following way. We started by adding the prior expectation
component p(t) to the momentary sensory evidence component s(t), and then
computed the cumulative sum over t. For an example of p(t), s(t), and the
resulting DV, see SI Appendix, Fig. S3. Formally, the simulated decision variable
is defined as follows:

DV =

∫ T

1
s(t) + p(t) dt, [4]

where: p(t) is the step-wise prior expectation with a constant initial offset � at
time t = 1 followed by a constant value that depended on the variant of the
model. In the “early offset and drift” case (the main model illustrated in Fig. 4
and SI Appendix, Fig. S4), this constant value was the initial offset � multiplied
by a factor � ∈ [0, 1] which typically decreased the strength of the initial “pure”
prior expectation at time t = 1 to a lesser sustained level for t > 1. In the case
of the “no early offset” model (illustrated in the rightmost panel of SI Appendix,
Fig. S3), the initial offset parameter � was set to zero. p(t) is defined as follows:

p(t) =

{
� if t = 1
� · � if t > 1

[5]

When the simulated process contained decision bounds, the deliberation
process was typically terminated early (at the time when one of the bounds was
crossed). Fig. 3F illustrates an analysis in which we only included zero-signal
stimuli and varied the strength of the prior-induced effects and the height of
the bounds across simulations. Fig. 4A shows an analysis of the choice behavior
for a simulation that included all of our experimental conditions as well as the
effects of stimulus expectation, biased interpretation of sensory evidence, and
terminating decision bounds.

Dynamic Range Analysis. We investigated the relationship between the
dynamic range of the DV excursion and behavioral signatures of decision bias
and perceptual uncertainty. For each trial, we first computed the dynamic range
of the DV by subtracting the DV’s initial value from the peak value. We then
used a median split to divide all low-contrast (or high-contrast) trials of a single
recording session (or model simulation) into a low- and high dynamic range
group. Finally, we fit two sets of psychometric functions to the behavioral choices
(one psychometric function per prior context, and one set of functions per
dynamic range group). This yielded a total of four psychometric functions per
session and contrast level (example for model simulation shown in Fig.4C, and
for real data in Fig.4D).

To quantify the relationship between behavioral decision bias (Δ�) and the
dynamic range of the neural DV, we used a metric, ΔB, defined as the surplus
in prior-induced decision bias observed for the low dynamic range trials relative
to the high dynamic range trials:

ΔB = Δ�L − Δ�H, [6]

where Δ�L is the prior-induced decision bias for the low dynamic range
trials (specifically, the horizontal separation between the pair of psychometric
functions fit to both prior contexts).

We devised an analogous metric, ΔU, to measure the association between
perceptual uncertainty and DV dynamic range:

ΔU = Δ�L − Δ�H, [7]

where Δ�H is the SD of the cumulative Gaussian function that relates the
proportion of clockwise choices to stimulus orientation for the high dynamic
range trials.

Data, Materials, and Software Availability. Previously published data were
used for this work (23).
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